Efficient Detection of Long Consistent Cycles and its Application to Distributed Synchronization
- URL: http://arxiv.org/abs/2407.04260v1
- Date: Fri, 5 Jul 2024 05:19:53 GMT
- Title: Efficient Detection of Long Consistent Cycles and its Application to Distributed Synchronization
- Authors: Shaohan Li, Yunpeng Shi, Gilad Lerman,
- Abstract summary: Group synchronization plays a crucial role in global pipelines for Structure from Motion (SfM)
Cycle synchronization has been effective in addressing these challenges.
We propose an algorithm for group synchronization that leverages information from cycles of lengths from three to six.
- Score: 16.017134759593333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Group synchronization plays a crucial role in global pipelines for Structure from Motion (SfM). Its formulation is nonconvex and it is faced with highly corrupted measurements. Cycle consistency has been effective in addressing these challenges. However, computationally efficient solutions are needed for cycles longer than three, especially in practical scenarios where 3-cycles are unavailable. To overcome this computational bottleneck, we propose an algorithm for group synchronization that leverages information from cycles of lengths ranging from three to six with a time complexity of order $O(n^3)$ (or $O(n^{2.373})$ when using a faster matrix multiplication algorithm). We establish non-trivial theory for this and related methods that achieves competitive sample complexity, assuming the uniform corruption model. To advocate the practical need for our method, we consider distributed group synchronization, which requires at least 4-cycles, and we illustrate state-of-the-art performance by our method in this context.
Related papers
- A Novel Normalized-Cut Solver with Nearest Neighbor Hierarchical
Initialization [107.07093621337084]
Normalized-Cut (N-Cut) is a famous model of spectral clustering.
Traditional N-Cut solvers are two-stage: 1) calculating the continuous spectral embedding of normalized Laplacian matrix; 2) discretization via $K$-means or spectral rotation.
We propose a novel N-Cut solver based on the famous coordinate descent method.
arXiv Detail & Related papers (2023-11-26T07:11:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient
Method for Distributed Learning in Computing Clusters [7.968142741470549]
ulstochastic gradulient ulsearch is developed to overcome the limitations of both synchronous and asynchronous distributed learning algorithms.
algname algorithms have (O(sqrtNepsilon-2(Delta+1) d+N)) and (O(sqrtNepsilon-2(+1) d+N))
(epsilon)-stationary point in non-Delta learning under distributed and shared memory architectures
arXiv Detail & Related papers (2022-08-17T17:42:33Z) - Unrolled algorithms for group synchronization [7.969977930633441]
Group synchronization problem involves estimating a collection of group elements from noisy measurements of their pairwise ratios.
Standard methods to estimate the group elements are based on iteratively applying linear and non-linear operators.
Motivated by the structural similarity to deep neural networks, we adopt the concept of algorithm unrolling.
arXiv Detail & Related papers (2022-07-19T17:25:56Z) - Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for
Scalar Data -- An Algorithm and A Benchmark [8.648433479399857]
This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K.
We express this algorithm within the setting of discrete Morse theory, which considerably reduces the number of input simplices to consider.
We also introduce a stratification approach to the problem, that we call "sandwiching"
arXiv Detail & Related papers (2022-06-27T10:54:24Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Learning Iterative Robust Transformation Synchronization [71.73273007900717]
We propose to use graph neural networks (GNNs) to learn transformation synchronization.
In this work, we avoid handcrafting robust loss functions, and propose to use graph neural networks (GNNs) to learn transformation synchronization.
arXiv Detail & Related papers (2021-11-01T07:03:14Z) - Asynchronous Advantage Actor Critic: Non-asymptotic Analysis and Linear
Speedup [56.27526702716774]
This paper revisits the A3C algorithm with TD(0) for the critic update, termed A3C-TD(0), with provable convergence guarantees.
Under i.i.d. sampling, A3C-TD(0) obtains sample complexity of $mathcalO(epsilon-2.5/N)$ per worker to achieve $epsilon$ accuracy, where $N$ is the number of workers.
Compared to the best-known sample complexity of $mathcalO(epsilon-2.5/N)$ for two
arXiv Detail & Related papers (2020-12-31T09:07:09Z) - Triclustering in Big Data Setting [2.752817022620644]
We describe versions of triclustering algorithms adapted for efficient calculations in distributed environments with MapReduce model or parallelisation mechanism provided by modern programming languages.
OAC-family of triclustering algorithms shows good parallelisation capabilities due to the independent processing of triples of a triadic formal context.
arXiv Detail & Related papers (2020-10-24T16:55:55Z) - Near-Optimal Performance Bounds for Orthogonal and Permutation Group
Synchronization via Spectral Methods [0.7614628596146599]
Group synchronization asks to recover group elements from their pairwise measurements.
spectral methods have enjoyed great popularity due to their efficiency and convenience.
For permutation group synchronization under random corruption, we show that the widely-used two-step procedure can recover all the group elements exactly.
arXiv Detail & Related papers (2020-08-12T14:20:16Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.