EAGERx: Graph-Based Framework for Sim2real Robot Learning
- URL: http://arxiv.org/abs/2407.04328v1
- Date: Fri, 5 Jul 2024 08:01:19 GMT
- Title: EAGERx: Graph-Based Framework for Sim2real Robot Learning
- Authors: Bas van der Heijden, Jelle Luijkx, Laura Ferranti, Jens Kober, Robert Babuska,
- Abstract summary: Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics.
We introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning.
- Score: 9.145895178276822
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics due to its potential to efficiently handle complex tasks. The sim2real approach faces challenges due to mismatches between simulation and reality. These discrepancies arise from inaccuracies in modeling physical phenomena and asynchronous control, among other factors. To this end, we introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning. It can support various simulators and aids in integrating state, action and time-scale abstractions to facilitate learning. EAGERx's integrated delay simulation, domain randomization features, and proposed synchronization algorithm contribute to narrowing the sim2real gap. We demonstrate (in the context of robot learning and beyond) the efficacy of EAGERx in accommodating diverse robotic systems and maintaining consistent simulation behavior. EAGERx is open source and its code is available at https://eagerx.readthedocs.io.
Related papers
- Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.
We validate our approach across two tasks: object scooping and table air hockey.
Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - BeSimulator: A Large Language Model Powered Text-based Behavior Simulator [28.112491177744783]
We introduce BeSimulator as an attempt towards behavior simulation in the context of text-based environments.
BeSimulator can generalize across scenarios and achieve long-horizon complex simulation.
arXiv Detail & Related papers (2024-09-24T08:37:04Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - TRANSIC: Sim-to-Real Policy Transfer by Learning from Online Correction [25.36756787147331]
Learning in simulation and transferring the learned policy to the real world has the potential to enable generalist robots.
We propose a data-driven approach to enable successful sim-to-real transfer based on a human-in-the-loop framework.
We show that our approach can achieve successful sim-to-real transfer in complex and contact-rich manipulation tasks such as furniture assembly.
arXiv Detail & Related papers (2024-05-16T17:59:07Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
Differentiable simulation promises fast convergence and stable training.
This work proposes a new differentiable simulation framework to overcome these challenges.
Our framework enables learning quadruped walking in simulation in minutes without parallelization.
arXiv Detail & Related papers (2024-03-21T22:18:59Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.