MobileFlow: A Multimodal LLM For Mobile GUI Agent
- URL: http://arxiv.org/abs/2407.04346v2
- Date: Wed, 7 Aug 2024 04:00:57 GMT
- Title: MobileFlow: A Multimodal LLM For Mobile GUI Agent
- Authors: Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo Shan, Xiutian Huang, Wenhao Xu,
- Abstract summary: This paper introduces MobileFlow, a multimodal large language model meticulously crafted for mobile GUI agents.
MobileFlow contains approximately 21 billion parameters and is equipped with novel hybrid visual encoders.
It has the capacity to fully interpret image data and comprehend user instructions for GUI interaction tasks.
- Score: 4.7619361168442005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, the integration of mobile Graphical User Interfaces (GUIs) is ubiquitous in most people's daily lives. And the ongoing evolution of multimodal large-scale models, such as GPT-4v, Qwen-VL-Max, has significantly bolstered the capabilities of GUI comprehension and user action analysis, showcasing the potentiality of intelligent GUI assistants. However, current GUI Agents often need to access page layout information through calling system APIs, which may pose privacy risks. Fixing GUI (such as mobile interfaces) to a certain low resolution might result in the loss of fine-grained image details. At the same time, the multimodal large models built for GUI Agents currently have poor understanding and decision-making abilities for Chinese GUI interfaces, making them difficult to apply to a large number of Chinese apps. This paper introduces MobileFlow, a multimodal large language model meticulously crafted for mobile GUI agents. Transforming from the open-source model Qwen-VL-Chat into GUI domain, MobileFlow contains approximately 21 billion parameters and is equipped with novel hybrid visual encoders, making it possible for variable resolutions of image inputs and good support for multilingual GUI. By incorporating Mixture of Experts (MoE) expansions and pioneering alignment training strategies, MobileFlow has the capacity to fully interpret image data and comprehend user instructions for GUI interaction tasks. Finally, MobileFlow outperforms Qwen-VL-Max and GPT-4v in terms of task execution by GUI agents on both public and our proposed evaluation metrics, and has been successfully deployed in real-world business contexts, proving its effectiveness for practical applications.
Related papers
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents [50.39555842254652]
We introduce the Android Multi-annotation EXpo (AMEX) to advance research on AI agents in mobile scenarios.
AMEX comprises over 104K high-resolution screenshots from 110 popular mobile applications, which are annotated at multiple levels.
AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions.
arXiv Detail & Related papers (2024-07-03T17:59:58Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
This paper introduces a new dataset, called GUI-World, which features meticulously crafted Human-MLLM annotations.
We evaluate the capabilities of current state-of-the-art MLLMs, including ImageLLMs and VideoLLMs, in understanding various types of GUI content.
arXiv Detail & Related papers (2024-06-16T06:56:53Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments.
We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP)
With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios.
arXiv Detail & Related papers (2024-02-19T08:29:03Z) - CogAgent: A Visual Language Model for GUI Agents [61.26491779502794]
We introduce CogAgent, a visual language model (VLM) specializing in GUI understanding and navigation.
By utilizing both low-resolution and high-resolution image encoders, CogAgent supports input at a resolution of 1120*1120.
CogAgent achieves the state of the art on five text-rich and four general VQA benchmarks, including VQAv2, OK-VQA, Text-VQA, ST-VQA, ChartQA, infoVQA, DocVQA, MM-Vet, and POPE.
arXiv Detail & Related papers (2023-12-14T13:20:57Z) - META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI [28.484013258445067]
We propose a new TOD architecture: GUI-based task-oriented dialogue system (GUI-TOD)
A GUI-TOD system can directly perform GUI operations on real APPs and execute tasks without invoking backend APIs.
We release META-GUI, a dataset for training a Multi-modal conversational agent on mobile GUI.
arXiv Detail & Related papers (2022-05-23T04:05:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.