Relational objectivity in presence of finite quantum resources
- URL: http://arxiv.org/abs/2407.04391v1
- Date: Fri, 5 Jul 2024 10:02:44 GMT
- Title: Relational objectivity in presence of finite quantum resources
- Authors: Luis C. Barbado, Časlav Brukner,
- Abstract summary: No-gos of Bell Kochen and Specker could be interpreted as implying that the notions of experimental context are fundamentally inseparable.
We argue that Penrose's spin network proposal is a potential formalisation of quantum theory that goes beyond the textbook framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The no-go theorems of Bell and Kochen and Specker could be interpreted as implying that the notions of system and experimental context are fundamentally inseparable. In this interpretation, statements such as "spin is 'up' along direction $x$" are relational statements about the configurations of macroscopic devices which are mediated by the spin and not about any intrinsic properties of the spin. The operational meaning of these statements is provided by the practically infinite resources of macroscopic devices that serve to define the notion of a direction in three-dimensional space. This is the subject of "textbook quantum mechanics": The description of quantum systems in relation to an experimental context.. Can one go beyond that? Relational quantum mechanics endeavors to provide a relational description between any quantum systems without the necessity of involving macroscopic devices. However, by applying "textbook quantum mechanics" in such situations, it implicitly assumes infinite resources, even for simple quantum systems such as spins, which have no capacity to define an experimental context. This leads to conceptual difficulties. We analyse Penrose's spin network proposal as a potential formalisation of quantum theory that goes beyond the textbook framework: A description in presence of finite resources, which is inherently relational and inseparable in the system-context entity.
Related papers
- A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Causality and a possible interpretation of quantum mechanics [2.7398542529968477]
Based on quantum field theory, our work provides a framework that harmoniously integrates relativistic causality, quantum non-locality, and quantum measurement.
We use reduced density matrices to represent the local information of the quantum state and show that the reduced density matrices cannot evolve superluminally.
Unlike recent approaches that focus on causality by introducing new operators to describe detectors, we consider that everything--including detectors, environments, and humans--is composed of the same fundamental fields.
arXiv Detail & Related papers (2024-02-08T07:07:22Z) - Step-by-step derivation of the algebraic structure of quantum mechanics
(or from nondisturbing to quantum correlations by connecting incompatible
observables) [0.0]
This paper provides a step-by-step derivation of the quantum formalism.
It helps us to understand why this formalism is as it is.
arXiv Detail & Related papers (2023-03-08T19:27:24Z) - Characterizing high-dimensional quantum contextuality [1.085294773316861]
Quantum contextuality is an essential resource in many quantum information processing tasks.
We provide systematic reliable methods for characterizing quantum contextuality in systems of fixed dimension.
As an application, our methods reveal the non-dimensional quantum contextuality structure.
arXiv Detail & Related papers (2022-12-22T09:31:37Z) - On a foundational conceptual principle of quantum mechanics [0.0]
Anton Zeilinger's "foundational conceptual principle" for quantum mechanics is an idealistic principle, which should be replaced by a realistic principle of contextuality.
We argue that the assumption of non-locality is not required to explain quantum correlation.
In contrast to Zeilinger's proposed principle of quantization of information, the principle of contextuality explains it realistically.
arXiv Detail & Related papers (2022-03-26T11:24:14Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Qubits are not observers -- a no-go theorem [0.0]
The relational approach to quantum states asserts that the physical description of quantum systems is always relative to something or someone.
We show, in the form of a no-go theorem, that in RQM the physical description of a system relative to an observer cannot represent knowledge about the observer.
arXiv Detail & Related papers (2021-07-07T22:48:16Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.