G-Adaptive mesh refinement -- leveraging graph neural networks and differentiable finite element solvers
- URL: http://arxiv.org/abs/2407.04516v1
- Date: Fri, 5 Jul 2024 13:57:35 GMT
- Title: G-Adaptive mesh refinement -- leveraging graph neural networks and differentiable finite element solvers
- Authors: James Rowbottom, Georg Maierhofer, Teo Deveney, Katharina Schratz, Pietro Liò, Carola-Bibiane Schönlieb, Chris Budd,
- Abstract summary: Mesh relocation (r-adaptivity) seeks to optimise the position of a fixed number of mesh points to obtain the best FE solution accuracy.
Recent machine learning approaches to r-adaptivity have mainly focused on the construction of fast surrogates for such classical methods.
Our new approach combines a graph neural network (GNN) powered architecture, with training based on direct minimisation of the FE solution error.
- Score: 21.82887690060956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel, and effective, approach to the long-standing problem of mesh adaptivity in finite element methods (FEM). FE solvers are powerful tools for solving partial differential equations (PDEs), but their cost and accuracy are critically dependent on the choice of mesh points. To keep computational costs low, mesh relocation (r-adaptivity) seeks to optimise the position of a fixed number of mesh points to obtain the best FE solution accuracy. Classical approaches to this problem require the solution of a separate nonlinear "meshing" PDE to find the mesh point locations. This incurs significant cost at remeshing and relies on certain a-priori assumptions and guiding heuristics for optimal mesh point location. Recent machine learning approaches to r-adaptivity have mainly focused on the construction of fast surrogates for such classical methods. Our new approach combines a graph neural network (GNN) powered architecture, with training based on direct minimisation of the FE solution error with respect to the mesh point locations. The GNN employs graph neural diffusion (GRAND), closely aligning the mesh solution space to that of classical meshing methodologies, thus replacing heuristics with a learnable strategy, and providing a strong inductive bias. This allows for rapid and robust training and results in an extremely efficient and effective GNN approach to online r-adaptivity. This method outperforms classical and prior ML approaches to r-adaptive meshing on the test problems we consider, in particular achieving lower FE solution error, whilst retaining the significant speed-up over classical methods observed in prior ML work.
Related papers
- DMF-TONN: Direct Mesh-free Topology Optimization using Neural Networks [4.663709549795511]
We propose a direct mesh-free method for performing topology optimization by integrating a density field approximation neural network with a displacement field approximation neural network.
We show that this direct integration approach can give comparable results to conventional topology optimization techniques.
arXiv Detail & Related papers (2023-05-06T18:04:51Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - M2N: Mesh Movement Networks for PDE Solvers [17.35053721712421]
We present the first learning-based end-to-end mesh movement framework for PDE solvers.
Key requirements are alleviating mesh, boundary consistency, and generalization to mesh with different resolutions.
We validate our methods on stationary and time-dependent, linear and non-linear equations.
arXiv Detail & Related papers (2022-04-24T04:23:31Z) - Adaptive neural domain refinement for solving time-dependent
differential equations [0.0]
A classic approach for solving differential equations with neural networks builds upon neural forms, which employ the differential equation with a discretisation of the solution domain.
It would be desirable to transfer such important and successful strategies to the field of neural network based solutions.
We propose a novel adaptive neural approach to meet this aim for solving time-dependent problems.
arXiv Detail & Related papers (2021-12-23T13:19:07Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Optimal Transport Based Refinement of Physics-Informed Neural Networks [0.0]
We propose a refinement strategy to the well-known Physics-Informed Neural Networks (PINNs) for solving partial differential equations (PDEs) based on the concept of Optimal Transport (OT)
PINNs solvers have been found to suffer from a host of issues: spectral bias in fully-connected pathologies, unstable gradient, and difficulties with convergence and accuracy.
We present a novel training strategy for solving the Fokker-Planck-Kolmogorov Equation (FPKE) using OT-based sampling to supplement the existing PINNs framework.
arXiv Detail & Related papers (2021-05-26T02:51:20Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - A hybrid MGA-MSGD ANN training approach for approximate solution of
linear elliptic PDEs [0.0]
We introduce a hybrid "Modified Genetic-Multilevel Gradient Descent" (MGA-MSGD) training algorithm.
It considerably improves accuracy and efficiency of solving 3D mechanical problems described, in strong-form, by PDEs via ANNs.
arXiv Detail & Related papers (2020-12-18T10:59:07Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.