A hybrid MGA-MSGD ANN training approach for approximate solution of
linear elliptic PDEs
- URL: http://arxiv.org/abs/2012.11517v1
- Date: Fri, 18 Dec 2020 10:59:07 GMT
- Title: A hybrid MGA-MSGD ANN training approach for approximate solution of
linear elliptic PDEs
- Authors: Hamidreza Dehghani and Andreas Zilian
- Abstract summary: We introduce a hybrid "Modified Genetic-Multilevel Gradient Descent" (MGA-MSGD) training algorithm.
It considerably improves accuracy and efficiency of solving 3D mechanical problems described, in strong-form, by PDEs via ANNs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a hybrid "Modified Genetic Algorithm-Multilevel Stochastic
Gradient Descent" (MGA-MSGD) training algorithm that considerably improves
accuracy and efficiency of solving 3D mechanical problems described, in
strong-form, by PDEs via ANNs (Artificial Neural Networks). This presented
approach allows the selection of a number of locations of interest at which the
state variables are expected to fulfil the governing equations associated with
a physical problem. Unlike classical PDE approximation methods such as finite
differences or the finite element method, there is no need to establish and
reconstruct the physical field quantity throughout the computational domain in
order to predict the mechanical response at specific locations of interest. The
basic idea of MGA-MSGD is the manipulation of the learnable parameters'
components responsible for the error explosion so that we can train the network
with relatively larger learning rates which avoids trapping in local minima.
The proposed training approach is less sensitive to the learning rate value,
training points density and distribution, and the random initial parameters.
The distance function to minimise is where we introduce the PDEs including any
physical laws and conditions (so-called, Physics Informed ANN). The Genetic
algorithm is modified to be suitable for this type of ANN in which a
Coarse-level Stochastic Gradient Descent (CSGD) is exploited to make the
decision of the offspring qualification. Employing the presented approach, a
considerable improvement in both accuracy and efficiency, compared with
standard training algorithms such as classical SGD and Adam optimiser, is
observed. The local displacement accuracy is studied and ensured by introducing
the results of Finite Element Method (FEM) at sufficiently fine mesh as the
reference displacements. A slightly more complex problem is solved ensuring its
feasibility.
Related papers
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Neural-Integrated Meshfree (NIM) Method: A differentiable
programming-based hybrid solver for computational mechanics [1.7132914341329852]
We present the neural-integrated meshfree (NIM) method, a differentiable programming-based hybrid meshfree approach within the field of computational mechanics.
NIM seamlessly integrates traditional physics-based meshfree discretization techniques with deep learning architectures.
Under the NIM framework, we propose two truly meshfree solvers: the strong form-based NIM (S-NIM) and the local variational form-based NIM (V-NIM)
arXiv Detail & Related papers (2023-11-21T17:57:12Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - GAS: A Gaussian Mixture Distribution-Based Adaptive Sampling Method for
PINNs [6.011027400738812]
PINNs can efficiently handle high-dimensional problems, but the accuracy is relatively low, especially for highly irregular problems.
Inspired by the idea of adaptive finite element methods and incremental learning, we propose GAS, a Gaussian mixture distribution-based adaptive sampling method for PINNs.
Several numerical simulations on 2D and 10D problems show that GAS is a promising method that achieves state-of-the-art accuracy among deep solvers, while being comparable with traditional numerical solvers.
arXiv Detail & Related papers (2023-03-28T09:40:06Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities [0.0]
This strategy can be used to efficiently train neural network surrogate models of partial differential equations.
The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system.
We show NBM is competitive in terms of memory and training speed with other PINN-type frameworks.
arXiv Detail & Related papers (2022-10-25T20:13:26Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
The proposed algorithm converges to the correct distribution with a controllable bias under mild conditions.
We show that the proposed algorithm canally converge to the correct distribution with a controllable bias under mild conditions.
arXiv Detail & Related papers (2020-06-29T20:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.