論文の概要: Judging from Support-set: A New Way to Utilize Few-Shot Segmentation for Segmentation Refinement Process
- arxiv url: http://arxiv.org/abs/2407.04519v2
- Date: Thu, 10 Oct 2024 04:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 23:46:45.228729
- Title: Judging from Support-set: A New Way to Utilize Few-Shot Segmentation for Segmentation Refinement Process
- Title(参考訳): サポートセットから判断する: 分割再分別プロセスにFew-Shotセグメンテーションを利用する新しい方法
- Authors: Seonghyeon Moon, Qingze, Liu, Haein Kong, Muhammad Haris Khan,
- Abstract要約: セグメンテーションの改良は、セグメンテーションアルゴリズムによって生成された初期粗いマスクを強化することを目的としている。
セグメンテーション改良の成功を判断できる手法は開発されていない。
セグメンテーション・リファインメントの成功を判断する手法であるJFS(Judging From Support-set)を提案する。
- 参考スコア(独自算出の注目度): 8.407954312239454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation refinement aims to enhance the initial coarse masks generated by segmentation algorithms. The refined masks are expected to capture more details and better contours of the target objects. Research on segmentation refinement has developed as a response to the need for high-quality image segmentations. However, to our knowledge, no method has been developed that can determine the success of segmentation refinement. Such a method could ensure the reliability of segmentation in applications where the outcome of the segmentation is important and fosters innovation in image processing technologies. To address this research gap, we propose Judging From Support-set (JFS), a method to judge the success of segmentation refinement leveraging an off-the-shelf few-shot segmentation (FSS) model. The traditional goal of the problem in FSS is to find a target object in a query image utilizing target information given by a support set. However, we propose a novel application of the FSS model in our evaluation pipeline for segmentation refinement methods. Given a coarse mask as input, segmentation refinement methods produce a refined mask; these two masks become new support masks for the FSS model. The existing support mask then serves as the test set for the FSS model to evaluate the quality of the refined segmentation by the segmentation refinement methods.We demonstrate the effectiveness of our proposed JFS framework by evaluating the SAM Enhanced Pseduo-Labels (SEPL) using SegGPT as the choice of FSS model on the PASCAL dataset. The results showed that JFS has the potential to determine whether the segmentation refinement process is successful.
- Abstract(参考訳): セグメンテーションの改良は、セグメンテーションアルゴリズムによって生成された初期粗いマスクを強化することを目的としている。
改良されたマスクは、より詳細と、ターゲットの物体の輪郭をよりよく捉えることが期待されている。
セグメンテーションの洗練に関する研究は、高品質な画像セグメンテーションの必要性に応えて発展してきた。
しかし,我々の知る限り,セグメンテーション改良の成功を判断できる手法は開発されていない。
このような手法は、セグメンテーションの結果が重要であるアプリケーションにおけるセグメンテーションの信頼性を確保し、画像処理技術の革新を促進する。
本研究のギャップに対処するため,本研究では,FSSモデルを用いたセグメント分割改良の成功を判断する手法であるJFS(Judging From Support-set)を提案する。
FSSの従来の目標は、サポートセットから与えられたターゲット情報を利用して、クエリ画像中の対象物を見つけることである。
しかし, セグメント化精細化のための評価パイプラインにおいて, FSSモデルの新たな適用法を提案する。
粗いマスクを入力として与えると、分割精製法は洗練されたマスクを生成し、これら2つのマスクはFSSモデルのための新しい支持マスクとなる。
既存のサポートマスクは,FSSモデルの試験セットとしてセグメンテーションの精細化法を用いて精細化の質を評価する。我々は,PASCALデータセット上でのFSSモデルの選択としてSegGPTを用いてSAM拡張Pseduo-Labels (SEPL)を評価することにより,提案するJSSフレームワークの有効性を実証する。
その結果, JFSはセグメンテーション精錬プロセスが成功するかどうかを判断できる可能性が示唆された。
関連論文リスト
- Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
プレトレーニング技術の最近の進歩により、視覚基礎モデルの能力が向上した。
最近の研究はSAMをFew-shot Semantic segmentation (FSS)に拡張している。
本稿では,グラフ解析に基づく簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-10-09T15:02:28Z) - Semantic Refocused Tuning for Open-Vocabulary Panoptic Segmentation [42.020470627552136]
Open-vocabulary Panoptic segmentationは、イメージを意味のあるマスクに正確に分割することを目的とした、新たなタスクである。
マスク分類は、オープンボキャブ・パノプティクスのセグメンテーションにおける主要なパフォーマンスボトルネックである。
オープンボキャブ・パノプティクスのセグメンテーションを大幅に強化する新しいフレームワークであるセマンティック・リフォーカス・タニングを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:50:28Z) - Image Segmentation in Foundation Model Era: A Survey [99.19456390358211]
イメージセグメンテーションにおける現在の研究は、これらの進歩に関連する特徴、課題、解決策の詳細な分析を欠いている。
本調査は、FM駆動画像セグメンテーションを中心とした最先端の研究を徹底的にレビューすることで、このギャップを埋めようとしている。
現在の研究成果の広さを包括する,300以上のセグメンテーションアプローチの概要を概観する。
論文 参考訳(メタデータ) (2024-08-23T10:07:59Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAMはオープン・ボキャブラリ・パノプティ・セグメンテーション・モデルであり、Segment Anything Model(SAM)の強みを、エンドツーエンドのフレームワークで視覚ネイティブのCLIPモデルと統合する。
本稿では,マスクの質を適応的に向上し,各画像の推論中にオープン語彙分類の性能を高めるマスク対応選択組立アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-14T17:55:03Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
少ないショットセグメンテーションは、注釈付き画像のみを提供する新しいタスクに迅速に適応できるセグメンテーションモデルをトレーニングすることを目的としている。
本稿では,対象オブジェクトの相対的サイズに基づいて,サポートイメージを拡大するIDA戦略を提案する。
提案したIDAは,サポートセットの多様性を効果的に向上し,サポートイメージとクエリイメージ間の分散一貫性を促進する。
論文 参考訳(メタデータ) (2024-01-18T10:29:10Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
そこで我々は,異なるセグメンテーションモデルによって生成されるオブジェクトマスクの品質を高めるために,SegRefinerと呼ばれるモデルに依存しないソリューションを提案する。
SegRefinerは粗いマスクを入力として取り、離散拡散プロセスを用いてそれらを洗練する。
さまざまな種類の粗いマスクにわたるセグメンテーションメトリックとバウンダリメトリックの両方を一貫して改善する。
論文 参考訳(メタデータ) (2023-12-19T18:53:47Z) - Mask Matching Transformer for Few-Shot Segmentation [71.32725963630837]
Mask Matching Transformer (MM-Former) は、少数ショットセグメンテーションタスクのための新しいパラダイムである。
まず、MM-Formerは、まず分解し、次にブレンドするというパラダイムに従う。
一般的なCOCO-20i$とPascal-5i$ベンチマークに関する広範な実験を行っている。
論文 参考訳(メタデータ) (2022-12-05T11:00:32Z) - HMFS: Hybrid Masking for Few-Shot Segmentation [27.49000348046462]
我々は特徴マスキング(FM)を強化するためのシンプルで効果的で効率的なアプローチを開発した。
本研究では,FM法における微細な空間的詳細の損失を補足する基本入力マスキング手法の検証と活用により補足する。
3つの公開ベンチマークの実験結果から、HMFSは現在の最先端手法よりも目に見えるマージンで優れていることが明らかになった。
論文 参考訳(メタデータ) (2022-03-24T03:07:20Z) - RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained
Features [53.71163467683838]
RefineMaskは、オブジェクトやシーンの高品質なインスタンスセグメンテーションのための新しい方法です。
インスタンス毎のセグメンテーションプロセス中に粒度の細かい機能を多段階的に組み込む。
以前のほとんどのメソッドで過剰にスムースされたオブジェクトの曲がった部分のようなハードケースをセグメンテーションすることに成功します。
論文 参考訳(メタデータ) (2021-04-17T15:09:20Z) - SimPropNet: Improved Similarity Propagation for Few-shot Image
Segmentation [14.419517737536706]
最近のディープニューラルネットワークに基づくFSS法は,サポート画像の前景特徴とクエリ画像特徴との高次元的特徴類似性を生かしている。
我々は,サポート機能とクエリ機能との共有を強制するために,サポートとクエリマスクを共同で予測することを提案する。
提案手法は,PASCAL-5iデータセット上での1ショットと5ショットのセグメンテーションに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2020-04-30T17:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。