論文の概要: CountGD: Multi-Modal Open-World Counting
- arxiv url: http://arxiv.org/abs/2407.04619v1
- Date: Fri, 5 Jul 2024 16:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 12:51:25.149485
- Title: CountGD: Multi-Modal Open-World Counting
- Title(参考訳): CountGD: マルチモーダルなオープンワールドカウント
- Authors: Niki Amini-Naieni, Tengda Han, Andrew Zisserman,
- Abstract要約: 本稿では,画像中のオープン語彙オブジェクトの数値化の一般化と精度の向上を目的とする。
本稿では,最初のオープンワールドカウントモデルであるCountGDを紹介した。
- 参考スコア(独自算出の注目度): 54.88804890463491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this paper is to improve the generality and accuracy of open-vocabulary object counting in images. To improve the generality, we repurpose an open-vocabulary detection foundation model (GroundingDINO) for the counting task, and also extend its capabilities by introducing modules to enable specifying the target object to count by visual exemplars. In turn, these new capabilities - being able to specify the target object by multi-modalites (text and exemplars) - lead to an improvement in counting accuracy. We make three contributions: First, we introduce the first open-world counting model, CountGD, where the prompt can be specified by a text description or visual exemplars or both; Second, we show that the performance of the model significantly improves the state of the art on multiple counting benchmarks - when using text only, CountGD is comparable to or outperforms all previous text-only works, and when using both text and visual exemplars, we outperform all previous models; Third, we carry out a preliminary study into different interactions between the text and visual exemplar prompts, including the cases where they reinforce each other and where one restricts the other. The code and an app to test the model are available at https://www.robots.ox.ac.uk/~vgg/research/countgd/.
- Abstract(参考訳): 本研究の目的は,画像中のオープン語彙オブジェクトの一般性と精度を向上させることである。
汎用性を向上させるため,対象対象を視覚的にカウントするためのモジュールを導入し,その機能を拡張したオープン語彙検出基盤モデル(GroundingDINO)を考案した。
代わりに、これらの新しい機能 - ターゲットオブジェクトをマルチモーダル(テキストと例示)で指定できる - は、精度の向上につながります。
第一に、最初のオープンワールドカウントモデルであるCountGDを導入し、そのプロンプトをテキスト記述やビジュアルインスペクタまたはその両方で指定できるようにし、第二に、そのモデルの性能が複数のカウントベンチマークにおける最先端を著しく改善することを示します。
モデルをテストするためのコードとアプリはhttps://www.robots.ox.ac.uk/~vgg/research/countgd/で公開されている。
関連論文リスト
- Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
本稿では,視覚言語モデルの豊富な知識を効果的に活用し,対人インタラクションを実現する手法を提案する。
同時に複数の人物による異なる行動を認識するという課題に対処するために,興味あるトークンスポッティング機構を設計する。
提案手法は,従来の手法に比べて優れた結果を得ることができ,さらにマルチアクションビデオに拡張することができる。
論文 参考訳(メタデータ) (2024-08-28T17:59:05Z) - OmniCount: Multi-label Object Counting with Semantic-Geometric Priors [42.38571663534819]
本稿では,オープン語彙フレームワークを用いた複数のオブジェクトカテゴリの同時カウントを実現するための,より実践的なアプローチを提案する。
我々のソリューションであるOmniCountは、事前訓練されたモデルから意味的および幾何学的な洞察(優先順位)を用いて、ユーザが指定した複数のカテゴリのオブジェクトをカウントすることで際立っている。
OmniCount-191の包括的な評価は、他の主要なベンチマークとともに、OmniCountの例外的なパフォーマンスを示し、既存のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2024-03-08T16:38:11Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
本論文の目的は,OVOD(Open-vocabulary Object Detection)である。
標準の2段階オブジェクト検出器アーキテクチャを採用する。
言語記述、画像例、これら2つの組み合わせの3つの方法を探究する。
論文 参考訳(メタデータ) (2023-06-08T18:31:56Z) - CLIP-Count: Towards Text-Guided Zero-Shot Object Counting [32.07271723717184]
オープン語彙オブジェクトの密度マップをゼロショットで推定する,最初のエンドツーエンドパイプラインであるCLIP-Countを提案する。
テキスト埋め込みを濃密な視覚特徴と整合させるため、我々は、密集した予測のための情報的パッチレベルの視覚表現を学習するために、モデルを誘導するパッチテキストコントラスト損失を導入する。
本手法は,対象物に対する高品質な密度マップを効果的に生成する。
論文 参考訳(メタデータ) (2023-05-12T08:19:39Z) - Human Evaluation of Text-to-Image Models on a Multi-Task Benchmark [80.79082788458602]
テキスト・ツー・イメージ・モデルを評価するための新しいマルチタスク・ベンチマークを提供する。
我々は、最も一般的なオープンソース(安定拡散)と商用(DALL-E2)モデルを比較した。
20人のコンピュータサイエンスの大学院生が、2つのモデルを3つのタスクで評価し、それぞれ10のプロンプトで3つの難易度で評価した。
論文 参考訳(メタデータ) (2022-11-22T09:27:53Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - Unifying Vision-and-Language Tasks via Text Generation [81.3910771082967]
一つのアーキテクチャで異なるタスクを学習する統合フレームワークを提案する。
我々のモデルは、視覚的およびテキスト的入力に基づいて、テキストでラベルを生成することを学習する。
我々の生成的アプローチは、稀な答えを持つ質問に答える上で、より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2021-02-04T17:59:30Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
Visual Dialogタスクは、対話に対する次の応答を生成するために、画像情報と会話コンテキスト情報の両方を利用するモデルを必要とする。
過去の共同モダリティ(歴史とイメージ)モデルが過度に再現され,対話履歴を記憶する傾向が強いことを示す。
本稿では,共有パラメータを用いたアンサンブルとコンセンサス・ドロップアウト融合による2つのモデルの統合手法を提案する。
論文 参考訳(メタデータ) (2020-01-17T14:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。