AllRestorer: All-in-One Transformer for Image Restoration under Composite Degradations
- URL: http://arxiv.org/abs/2411.10708v1
- Date: Sat, 16 Nov 2024 05:30:55 GMT
- Title: AllRestorer: All-in-One Transformer for Image Restoration under Composite Degradations
- Authors: Jiawei Mao, Yu Yang, Xuesong Yin, Ling Shao, Hao Tang,
- Abstract summary: We propose a novel Transformer-based restoration framework, AllRestorer.
AllRestorer adaptively considers all image impairments, thereby avoiding errors from scene descriptor misdirection.
We show that AllRestorer achieves a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset.
- Score: 52.076067325999226
- License:
- Abstract: Image restoration models often face the simultaneous interaction of multiple degradations in real-world scenarios. Existing approaches typically handle single or composite degradations based on scene descriptors derived from text or image embeddings. However, due to the varying proportions of different degradations within an image, these scene descriptors may not accurately differentiate between degradations, leading to suboptimal restoration in practical applications. To address this issue, we propose a novel Transformer-based restoration framework, AllRestorer. In AllRestorer, we enable the model to adaptively consider all image impairments, thereby avoiding errors from scene descriptor misdirection. Specifically, we introduce an All-in-One Transformer Block (AiOTB), which adaptively removes all degradations present in a given image by modeling the relationships between all degradations and the image embedding in latent space. To accurately address different variations potentially present within the same type of degradation and minimize ambiguity, AiOTB utilizes a composite scene descriptor consisting of both image and text embeddings to define the degradation. Furthermore, AiOTB includes an adaptive weight for each degradation, allowing for precise control of the restoration intensity. By leveraging AiOTB, AllRestorer avoids misdirection caused by inaccurate scene descriptors, achieving a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset.
Related papers
- OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
arXiv Detail & Related papers (2024-07-05T16:27:00Z) - Preserving Full Degradation Details for Blind Image Super-Resolution [40.152015542099704]
We propose an alternative to learn degradation representations through reproducing degraded low-resolution (LR) images.
By guiding the degrader to reconstruct input LR images, full degradation information can be encoded into the representations.
Experiments show that our representations can extract accurate and highly robust degradation information.
arXiv Detail & Related papers (2024-07-01T13:54:59Z) - Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance [12.066756224383827]
textbfRestorer is a novel Transformer-based all-in-one image restoration model.
It can handle composite degradation in real-world scenarios without requiring additional training.
It is efficient during inference, suggesting the potential in real-world applications.
arXiv Detail & Related papers (2024-06-18T13:18:32Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - PromptIR: Prompting for All-in-One Blind Image Restoration [64.02374293256001]
We present a prompt-based learning approach, PromptIR, for All-In-One image restoration.
Our method uses prompts to encode degradation-specific information, which is then used to dynamically guide the restoration network.
PromptIR offers a generic and efficient plugin module with few lightweight prompts.
arXiv Detail & Related papers (2023-06-22T17:59:52Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
In this work, we propose a novel invertible framework to model the bidirectional degradation and restoration from a new perspective.
We develop invertible models to generate valid degraded images and transform the distribution of lost contents.
Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable.
arXiv Detail & Related papers (2022-10-09T06:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.