SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images
- URL: http://arxiv.org/abs/2407.04651v1
- Date: Fri, 5 Jul 2024 17:07:25 GMT
- Title: SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images
- Authors: Weiyi Xie, Nathalie Willems, Shubham Patil, Yang Li, Mayank Kumar,
- Abstract summary: We propose a strategy for adapting the Segment Anything (SAM) to anatomical segmentation tasks in medical images.
We leverage few-shot embeddings derived from a limited set of labeled images as prompts for anatomical querying objects captured in image embeddings.
Our method prioritizes the efficiency of the fine-tuning process by exclusively training the mask decoder through caching mechanisms.
- Score: 3.2099042811875833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a straightforward yet highly effective few-shot fine-tuning strategy for adapting the Segment Anything (SAM) to anatomical segmentation tasks in medical images. Our novel approach revolves around reformulating the mask decoder within SAM, leveraging few-shot embeddings derived from a limited set of labeled images (few-shot collection) as prompts for querying anatomical objects captured in image embeddings. This innovative reformulation greatly reduces the need for time-consuming online user interactions for labeling volumetric images, such as exhaustively marking points and bounding boxes to provide prompts slice by slice. With our method, users can manually segment a few 2D slices offline, and the embeddings of these annotated image regions serve as effective prompts for online segmentation tasks. Our method prioritizes the efficiency of the fine-tuning process by exclusively training the mask decoder through caching mechanisms while keeping the image encoder frozen. Importantly, this approach is not limited to volumetric medical images, but can generically be applied to any 2D/3D segmentation task. To thoroughly evaluate our method, we conducted extensive validation on four datasets, covering six anatomical segmentation tasks across two modalities. Furthermore, we conducted a comparative analysis of different prompting options within SAM and the fully-supervised nnU-Net. The results demonstrate the superior performance of our method compared to SAM employing only point prompts (approximately 50% improvement in IoU) and performs on-par with fully supervised methods whilst reducing the requirement of labeled data by at least an order of magnitude.
Related papers
- SAM-MPA: Applying SAM to Few-shot Medical Image Segmentation using Mask Propagation and Auto-prompting [6.739803086387235]
Medical image segmentation often faces the challenge of prohibitively expensive annotation costs.
We propose leveraging the Segment Anything Model (SAM), pre-trained on over 1 billion masks.
We develop SAM-MPA, an innovative SAM-based framework for few-shot medical image segmentation.
arXiv Detail & Related papers (2024-11-26T12:12:12Z) - Adaptive Prompt Learning with SAM for Few-shot Scanning Probe Microscope Image Segmentation [11.882111844381098]
Segment Anything Model (SAM) has demonstrated strong performance in image segmentation of natural scene images.
SAM's effectiveness diminishes markedly when applied to specific scientific domains, such as Scanning Probe Microscope (SPM) images.
We propose an Adaptive Prompt Learning with SAM framework tailored for few-shot SPM image segmentation.
arXiv Detail & Related papers (2024-10-16T13:38:01Z) - RevSAM2: Prompt SAM2 for Medical Image Segmentation via Reverse-Propagation without Fine-tuning [4.590933790796203]
We introduce RevSAM2, a simple yet effective self-correction framework for medical image segmentation.
RevSAM2 achieves superior performance in unseen 3D medical image segmentation tasks without the need for fine-tuning.
We are the first to explore the potential of SAM2 in label-efficient medical image segmentation without fine-tuning.
arXiv Detail & Related papers (2024-09-06T14:17:09Z) - CycleSAM: One-Shot Surgical Scene Segmentation using Cycle-Consistent Feature Matching to Prompt SAM [2.9500242602590565]
CycleSAM is an approach for one-shot surgical scene segmentation using the training image-mask pair at test-time.
We employ a ResNet50 encoder pretrained on surgical images in a self-supervised fashion, thereby maintaining high label-efficiency.
arXiv Detail & Related papers (2024-07-09T12:08:07Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.