Enhancing Vehicle Re-identification and Matching for Weaving Analysis
- URL: http://arxiv.org/abs/2407.04688v1
- Date: Fri, 5 Jul 2024 17:50:35 GMT
- Title: Enhancing Vehicle Re-identification and Matching for Weaving Analysis
- Authors: Mei Qiu, Wei Lin, Stanley Chien, Lauren Christopher, Yaobin Chen, Shu Hu,
- Abstract summary: Vehicle weaving on highways contributes to traffic congestion, raises safety issues, and underscores the need for sophisticated traffic management systems.
Current tools are inadequate in offering precise and comprehensive data on lane-specific weaving patterns.
This paper introduces an innovative method for collecting non-overlapping video data in weaving zones, enabling the generation of quantitative insights into lane-specific weaving behaviors.
- Score: 12.549381266302959
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vehicle weaving on highways contributes to traffic congestion, raises safety issues, and underscores the need for sophisticated traffic management systems. Current tools are inadequate in offering precise and comprehensive data on lane-specific weaving patterns. This paper introduces an innovative method for collecting non-overlapping video data in weaving zones, enabling the generation of quantitative insights into lane-specific weaving behaviors. Our experimental results confirm the efficacy of this approach, delivering critical data that can assist transportation authorities in enhancing traffic control and roadway infrastructure.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections [1.7273380623090846]
This research involved recording traffic at various unsignalized intersections in Memphis, TN, during different times of the day.
After manually labeling video data to capture specific variables, we reconstructed traffic scenarios in the SUMO simulation environment.
The output data from these simulations offered a comprehensive analysis, including time-space diagrams for vehicle movement, travel time frequency distributions, and speed-position plots to identify bottleneck points.
arXiv Detail & Related papers (2023-12-22T09:38:06Z) - Semantic Map Learning of Traffic Light to Lane Assignment based on
Motion Data [12.853720506838043]
Autonomous vehicles commonly rely on High Definition (HD) maps that contain information about the assignment of traffic lights to lanes.
To remedy these issues, our novel approach derives the assignments from traffic light states and the corresponding motion patterns of vehicle traffic.
Our publicly available API for the Lyft Level 5 dataset enables researchers to develop and evaluate their own approaches.
arXiv Detail & Related papers (2023-09-26T09:42:21Z) - Automatic Extraction of Relevant Road Infrastructure using Connected
vehicle data and Deep Learning Model [4.235459779667272]
We propose a novel approach that leverages connected vehicle data and cutting-edge deep learning techniques.
By employing geohashing to segment vehicle trajectories and then generating image representations of road segments, we utilize the YOLOv5 algorithm for accurate classification of both straight road segments and intersections.
Experimental results demonstrate an impressive overall classification accuracy of 95%, with straight roads achieving a remarkable 97% F1 score and intersections reaching a 90% F1 score.
arXiv Detail & Related papers (2023-08-10T15:57:47Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
We present OpenLane-V2, the first dataset on topology reasoning for traffic scene structure.
OpenLane-V2 consists of 2,000 annotated road scenes that describe traffic elements and their correlation to the lanes.
We evaluate various state-of-the-art methods, and present their quantitative and qualitative results on OpenLane-V2 to indicate future avenues for investigating topology reasoning in traffic scenes.
arXiv Detail & Related papers (2023-04-20T16:31:22Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Towards formalization and monitoring of microscopic traffic parameters
using temporal logic [1.3706331473063877]
We develop specification-based monitoring for the analysis of traffic networks using the formal language Signal Temporal Logic.
We develop monitors that identify safety-related behavior such as conforming to speed limits and maintaining appropriate headway.
This work can be utilized by traffic management centers to study the traffic stream properties, identify possible hazards, and provide valuable feedback for automating the traffic monitoring systems.
arXiv Detail & Related papers (2021-10-12T17:59:26Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - A Deep Reinforcement Learning Approach for Ramp Metering Based on
Traffic Video Data [0.0]
Ramp metering that uses traffic signals to regulate vehicle flows from the on-ramps has been widely implemented to improve vehicle mobility of the freeway.
Previous studies generally update signal timings in real-time based on predefined traffic measures collected by point detectors.
We propose a deep reinforcement learning (DRL) method to explore the potential of traffic video data in improving the efficiency of ramp metering.
arXiv Detail & Related papers (2020-12-09T05:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.