PhishNet: A Phishing Website Detection Tool using XGBoost
- URL: http://arxiv.org/abs/2407.04732v1
- Date: Sat, 29 Jun 2024 21:31:13 GMT
- Title: PhishNet: A Phishing Website Detection Tool using XGBoost
- Authors: Prashant Kumar, Kevin Antony, Deepakmoney Banga, Arshpreet Sohal,
- Abstract summary: PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning.
It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework.
- Score: 1.777434178384403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.
Related papers
- Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
This project addresses the constraints of traditional reference-based phishing detection by developing an LLM agent framework.
This agent harnesses Large Language Models to actively fetch and utilize online information.
Our approach has achieved with accuracy of 0.945, significantly outperforms the existing solution(DynaPhish) by 0.445.
arXiv Detail & Related papers (2024-08-03T05:08:27Z) - Position Paper: Think Globally, React Locally -- Bringing Real-time Reference-based Website Phishing Detection on macOS [0.4962561299282114]
The recent surge in phishing attacks keeps undermining the effectiveness of the traditional anti-phishing blacklist approaches.
On-device anti-phishing solutions are gaining popularity as they offer faster phishing detection locally.
We propose a phishing detection solution that uses a combination of computer vision and on-device machine learning models to analyze websites in real time.
arXiv Detail & Related papers (2024-05-28T14:46:03Z) - Novel Interpretable and Robust Web-based AI Platform for Phishing Email Detection [0.0]
Phishing emails pose a significant threat, causing financial losses and security breaches.
This study proposes a high-performance machine learning model for email classification.
The model achieves a f1 score of 0.99 and is designed for deployment within relevant applications.
arXiv Detail & Related papers (2024-05-19T17:18:27Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
Phishing URL identification is the best way to address the problem.
Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs.
We propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data.
arXiv Detail & Related papers (2024-04-27T17:13:49Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
Phishing is an increasingly sophisticated form of cyberattack that is inflicting huge financial damage to corporations throughout the globe.
This paper proposes a comprehensive methodology for detecting phishing websites.
A combination of feature selection, greedy algorithm, cross-validation, and deep learning methods have been utilized to construct a sophisticated stacking ensemble.
arXiv Detail & Related papers (2024-03-13T14:26:25Z) - Do You Trust Your Model? Emerging Malware Threats in the Deep Learning
Ecosystem [37.650342256199096]
We introduce MaleficNet 2.0, a technique to embed self-extracting, self-executing malware in neural networks.
MaleficNet 2.0 injection technique is stealthy, does not degrade the performance of the model, and is robust against removal techniques.
We implement a proof-of-concept self-extracting neural network malware using MaleficNet 2.0, demonstrating the practicality of the attack against a widely adopted machine learning framework.
arXiv Detail & Related papers (2024-03-06T10:27:08Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs.
Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models.
This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets.
We propose a potential solution in the form of a tool engineered to alleviate bias in ML models.
arXiv Detail & Related papers (2024-01-16T13:45:54Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
This paper presents a novel defense mechanism, CrowdGuard, that effectively mitigates backdoor attacks in Federated Learning.
CrowdGuard employs a server-located stacked clustering scheme to enhance its resilience to rogue client feedback.
The evaluation results demonstrate that CrowdGuard achieves a 100% True-Positive-Rate and True-Negative-Rate across various scenarios.
arXiv Detail & Related papers (2022-10-14T11:27:49Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.