PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis
- URL: http://arxiv.org/abs/2404.17960v1
- Date: Sat, 27 Apr 2024 17:13:49 GMT
- Title: PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis
- Authors: Md Robiul Islam, Md Mahamodul Islam, Mst. Suraiya Afrin, Anika Antara, Nujhat Tabassum, Al Amin,
- Abstract summary: Phishing URL identification is the best way to address the problem.
Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs.
We propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data.
- Score: 1.102674168371806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity is one of the global issues because of the extensive dependence on cyber systems of individuals, industries, and organizations. Among the cyber attacks, phishing is increasing tremendously and affecting the global economy. Therefore, this phenomenon highlights the vital need for enhancing user awareness and robust support at both individual and organizational levels. Phishing URL identification is the best way to address the problem. Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs. However, these approaches often need more convincing accuracy and rely on datasets consisting of limited samples. Furthermore, these black box intelligent models decision to detect suspicious URLs needs proper explanation to understand the features affecting the output. To address the issues, we propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data. The proposed model outperforms existing works by attaining an accuracy of 99.85%. Additionally, our explainability analysis highlights certain features that significantly contribute to identifying the phishing URL.
Related papers
- Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
Phishing remains a pervasive cyber threat, as attackers craft deceptive emails to lure victims into revealing sensitive information.
While Artificial Intelligence (AI) has become a key component in defending against phishing attacks, these approaches face critical limitations.
We propose the Phishing Evolution Network (PEN), a framework leveraging large language models (LLMs) and adversarial training mechanisms to continuously generate high quality and realistic diverse phishing samples.
arXiv Detail & Related papers (2024-11-18T09:03:51Z) - PhishNet: A Phishing Website Detection Tool using XGBoost [1.777434178384403]
PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning.
It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework.
arXiv Detail & Related papers (2024-06-29T21:31:13Z) - The Performance of Sequential Deep Learning Models in Detecting Phishing Websites Using Contextual Features of URLs [0.0]
This study focuses on the detection of phishing websites using deep learning models such as Multi-Head Attention, Temporal Convolutional Network (TCN), BI-LSTM, and LSTM.
Results demonstrate that Multi-Head Attention and BI-LSTM model outperform some other deep learning-based algorithms such as TCN and LSTM in producing better precision, recall, and F1-scores.
arXiv Detail & Related papers (2024-04-15T13:58:22Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites.
The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats.
Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies.
arXiv Detail & Related papers (2024-01-17T03:44:27Z) - Mitigating Bias in Machine Learning Models for Phishing Webpage Detection [0.8050163120218178]
Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs.
Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models.
This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets.
We propose a potential solution in the form of a tool engineered to alleviate bias in ML models.
arXiv Detail & Related papers (2024-01-16T13:45:54Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
We study robustness of concept-based models to adversarial perturbations.
In this paper, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models.
We then propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks.
arXiv Detail & Related papers (2022-11-29T10:43:51Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Exploring the Vulnerability of Deep Neural Networks: A Study of
Parameter Corruption [40.76024057426747]
We propose an indicator to measure the robustness of neural network parameters by exploiting their vulnerability via parameter corruption.
For practical purposes, we give a gradient-based estimation, which is far more effective than random corruption trials.
arXiv Detail & Related papers (2020-06-10T02:29:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.