Neuro-Symbolic Fusion of Wi-Fi Sensing Data for Passive Radar with Inter-Modal Knowledge Transfer
- URL: http://arxiv.org/abs/2407.04734v1
- Date: Mon, 1 Jul 2024 08:43:27 GMT
- Title: Neuro-Symbolic Fusion of Wi-Fi Sensing Data for Passive Radar with Inter-Modal Knowledge Transfer
- Authors: Marco Cominelli, Francesco Gringoli, Lance M. Kaplan, Mani B. Srivastava, Trevor Bihl, Erik P. Blasch, Nandini Iyer, Federico Cerutti,
- Abstract summary: This paper introduces DeepProbHAR, a neuro-symbolic architecture for Wi-Fi sensing.
It provides initial evidence that Wi-Fi signals can differentiate between simple movements, such as leg or arm movements.
DeepProbHAR achieves results comparable to the state-of-the-art in human activity recognition.
- Score: 10.388561519507471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wi-Fi devices, akin to passive radars, can discern human activities within indoor settings due to the human body's interaction with electromagnetic signals. Current Wi-Fi sensing applications predominantly employ data-driven learning techniques to associate the fluctuations in the physical properties of the communication channel with the human activity causing them. However, these techniques often lack the desired flexibility and transparency. This paper introduces DeepProbHAR, a neuro-symbolic architecture for Wi-Fi sensing, providing initial evidence that Wi-Fi signals can differentiate between simple movements, such as leg or arm movements, which are integral to human activities like running or walking. The neuro-symbolic approach affords gathering such evidence without needing additional specialised data collection or labelling. The training of DeepProbHAR is facilitated by declarative domain knowledge obtained from a camera feed and by fusing signals from various antennas of the Wi-Fi receivers. DeepProbHAR achieves results comparable to the state-of-the-art in human activity recognition. Moreover, as a by-product of the learning process, DeepProbHAR generates specialised classifiers for simple movements that match the accuracy of models trained on finely labelled datasets, which would be particularly costly.
Related papers
- Approaches to human activity recognition via passive radar [4.2261749429617534]
The thesis explores novel methods for Human Activity Recognition (HAR) using passive radar with a focus on non-intrusive Wi-Fi Channel State Information (CSI) data.
This study leverages the non-intrusive nature of CSI, using Spiking Neural Networks (SNN) to interpret signal variations caused by human movements.
arXiv Detail & Related papers (2024-10-31T17:28:41Z) - Accurate Passive Radar via an Uncertainty-Aware Fusion of Wi-Fi Sensing Data [12.511211994847173]
Wi-Fi devices can effectively be used as passive radar systems that sense what happens in the surroundings and can even discern human activity.
We propose a principled architecture which employs Variational Auto-Encoders for estimating a latent distribution responsible for generating the data.
We verify that the fused data processed by different antennas of the same Wi-Fi receiver results in increased accuracy of human activity recognition.
arXiv Detail & Related papers (2024-07-01T08:26:15Z) - Radar-Based Recognition of Static Hand Gestures in American Sign
Language [17.021656590925005]
This study explores the efficacy of synthetic data generated by an advanced radar ray-tracing simulator.
The simulator employs an intuitive material model that can be adjusted to introduce data diversity.
Despite exclusively training the NN on synthetic data, it demonstrates promising performance when put to the test with real measurement data.
arXiv Detail & Related papers (2024-02-20T08:19:30Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
An end-to-end WiFi signal neural network (SNN) is proposed to enable WiFi-only sensing in both line-of-sight and non-line-of-sight scenarios.
Especially, the 3D convolution module is able to explore thetemporal continuity of WiFi signals, and the feature self-attention module can explicitly maintain dominant features.
arXiv Detail & Related papers (2022-06-20T16:03:45Z) - Hands-on Wireless Sensing with Wi-Fi: A Tutorial [7.8774878397748065]
This tutorial takes Wi-Fi sensing as an example.
It introduces both the theoretical principles and the code implementation of data collection, signal processing, features extraction, and model design.
arXiv Detail & Related papers (2022-06-20T01:53:35Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
A new WiFi-based and video-based neural network (WiNN) is proposed to improve the robustness of activity recognition.
Our results show that WiVi data set satisfies the primary demand and all three branches in the proposed pipeline keep more than $80%$ of activity recognition accuracy.
arXiv Detail & Related papers (2022-05-24T10:49:11Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Harvesting Ambient RF for Presence Detection Through Deep Learning [12.535149305258171]
This paper explores the use of ambient radio frequency (RF) signals for human presence detection through deep learning.
Using WiFi signal as an example, we demonstrate that the channel state information (CSI) obtained at the receiver contains rich information about the propagation environment.
A convolutional neural network (CNN) properly trained with both magnitude and phase information is then designed to achieve reliable presence detection.
arXiv Detail & Related papers (2020-02-13T20:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.