Question Answering with Texts and Tables through Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2407.04858v1
- Date: Fri, 5 Jul 2024 20:44:01 GMT
- Title: Question Answering with Texts and Tables through Deep Reinforcement Learning
- Authors: Marcos M. José, Flávio N. Cação, Maria F. Ribeiro, Rafael M. Cheang, Paulo Pirozelli, Fabio G. Cozman,
- Abstract summary: This paper proposes a novel architecture to generate multi-hop answers to open domain questions that require information from texts and tables.
Our architecture employs reinforcement learning to choose between different state-of-the-art tools sequentially until, in the end, a desired answer is generated.
This system achieved an F1-score of 19.03, comparable to iterative systems in the literature.
- Score: 0.06597195879147556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel architecture to generate multi-hop answers to open domain questions that require information from texts and tables, using the Open Table-and-Text Question Answering dataset for validation and training. One of the most common ways to generate answers in this setting is to retrieve information sequentially, where a selected piece of data helps searching for the next piece. As different models can have distinct behaviors when called in this sequential information search, a challenge is how to select models at each step. Our architecture employs reinforcement learning to choose between different state-of-the-art tools sequentially until, in the end, a desired answer is generated. This system achieved an F1-score of 19.03, comparable to iterative systems in the literature.
Related papers
- Exploring Hint Generation Approaches in Open-Domain Question Answering [16.434748534272014]
We introduce a novel context preparation approach called HINTQA.
Unlike traditional methods, HINTQA prompts LLMs to produce hints about potential answers for the question.
We demonstrate that hints enhance the accuracy of answers more than retrieved and generated contexts.
arXiv Detail & Related papers (2024-09-24T13:50:32Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
We propose query-oriented data augmentation to enrich search logs and empower the modeling.
We generate supplemental training pairs by altering the most important part of a search context.
We develop several strategies to alter the current query, resulting in new training data with varying degrees of difficulty.
arXiv Detail & Related papers (2024-07-04T08:08:33Z) - TANQ: An open domain dataset of table answered questions [15.323690523538572]
TANQ is the first open domain question answering dataset where the answers require building tables from information across multiple sources.
We release the full source attribution for every cell in the resulting table and benchmark state-of-the-art language models in open, oracle, and closed book setups.
Our best-performing baseline, GPT4 reaches an overall F1 score of 29.1, lagging behind human performance by 19.7 points.
arXiv Detail & Related papers (2024-05-13T14:07:20Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
People primarily consult tables to conduct data analysis or answer specific questions.
We define a new query-focused table summarization task, where text generation models have to perform human-like reasoning.
We introduce a new benchmark named QTSumm for this task, which contains 7,111 human-annotated query-summary pairs over 2,934 tables.
arXiv Detail & Related papers (2023-05-23T17:43:51Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
We introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs.
FeTaQA yields a more challenging table question answering setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source.
arXiv Detail & Related papers (2021-04-01T09:59:40Z) - Open Question Answering over Tables and Text [55.8412170633547]
In open question answering (QA), the answer to a question is produced by retrieving and then analyzing documents that might contain answers to the question.
Most open QA systems have considered only retrieving information from unstructured text.
We present a new large-scale dataset Open Table-and-Text Question Answering (OTT-QA) to evaluate performance on this task.
arXiv Detail & Related papers (2020-10-20T16:48:14Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
We describe two groups of models for sentence selection: QA-based approaches, which run a full-fledged QA system to identify answer candidates, and retrieval-based models, which find parts of each passage specifically related to each question.
We show that very lightweight QA models can do well at this task, but retrieval-based models are faster still.
arXiv Detail & Related papers (2020-09-18T23:39:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.