Augmented Bayesian Policy Search
- URL: http://arxiv.org/abs/2407.04864v1
- Date: Fri, 5 Jul 2024 20:56:45 GMT
- Title: Augmented Bayesian Policy Search
- Authors: Mahdi Kallel, Debabrota Basu, Riad Akrour, Carlo D'Eramo,
- Abstract summary: In practice, exploration is largely performed by deterministic policies.
First-order Bayesian Optimization (BO) methods offer a principled way of performing exploration using deterministic policies.
We introduce a novel mean function for the probabilistic model.
This results in augmenting BO methods with the action-value function.
- Score: 14.292685001631945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deterministic policies are often preferred over stochastic ones when implemented on physical systems. They can prevent erratic and harmful behaviors while being easier to implement and interpret. However, in practice, exploration is largely performed by stochastic policies. First-order Bayesian Optimization (BO) methods offer a principled way of performing exploration using deterministic policies. This is done through a learned probabilistic model of the objective function and its gradient. Nonetheless, such approaches treat policy search as a black-box problem, and thus, neglect the reinforcement learning nature of the problem. In this work, we leverage the performance difference lemma to introduce a novel mean function for the probabilistic model. This results in augmenting BO methods with the action-value function. Hence, we call our method Augmented Bayesian Search~(ABS). Interestingly, this new mean function enhances the posterior gradient with the deterministic policy gradient, effectively bridging the gap between BO and policy gradient methods. The resulting algorithm combines the convenience of the direct policy search with the scalability of reinforcement learning. We validate ABS on high-dimensional locomotion problems and demonstrate competitive performance compared to existing direct policy search schemes.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Constrained Reinforcement Learning via Dissipative Saddle Flow Dynamics [5.270497591225775]
In constrained reinforcement learning (C-RL), an agent seeks to learn from the environment a policy that maximizes the expected cumulative reward.
Several algorithms rooted in sampled-based primal-dual methods have been recently proposed to solve this problem in policy space.
We propose a novel algorithm for constrained RL that does not suffer from these limitations.
arXiv Detail & Related papers (2022-12-03T01:54:55Z) - Sigmoidally Preconditioned Off-policy Learning:a new exploration method
for reinforcement learning [14.991913317341417]
We focus on an off-policy Actor-Critic architecture, and propose a novel method, called Preconditioned Proximal Policy Optimization (P3O)
P3O can control the high variance of importance sampling by applying a preconditioner to the Conservative Policy Iteration (CPI) objective.
Results show that our P3O maximizes the CPI objective better than PPO during the training process.
arXiv Detail & Related papers (2022-05-20T09:38:04Z) - Dimensionality Reduction and Prioritized Exploration for Policy Search [29.310742141970394]
Black-box policy optimization is a class of reinforcement learning algorithms that explores and updates the policies at the parameter level.
We present a novel method to prioritize the exploration of effective parameters and cope with full covariance matrix updates.
Our algorithm learns faster than recent approaches and requires fewer samples to achieve state-of-the-art results.
arXiv Detail & Related papers (2022-03-09T15:17:09Z) - Direct Random Search for Fine Tuning of Deep Reinforcement Learning
Policies [5.543220407902113]
We show that a direct random search is very effective at fine-tuning DRL policies by directly optimizing them using deterministic rollouts.
Our results show that this method yields more consistent and higher performing agents on the environments we tested.
arXiv Detail & Related papers (2021-09-12T20:12:46Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Policy Gradient for Continuing Tasks in Non-stationary Markov Decision
Processes [112.38662246621969]
Reinforcement learning considers the problem of finding policies that maximize an expected cumulative reward in a Markov decision process with unknown transition probabilities.
We compute unbiased navigation gradients of the value function which we use as ascent directions to update the policy.
A major drawback of policy gradient-type algorithms is that they are limited to episodic tasks unless stationarity assumptions are imposed.
arXiv Detail & Related papers (2020-10-16T15:15:42Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
Off-policy policy optimization is a challenging problem in reinforcement learning.
Off-policy algorithms are memory-efficient and capable of learning from off-policy samples.
arXiv Detail & Related papers (2020-09-14T16:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.