論文の概要: Explainable Metric Learning for Deflating Data Bias
- arxiv url: http://arxiv.org/abs/2407.04866v1
- Date: Fri, 5 Jul 2024 21:07:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 22:16:57.717391
- Title: Explainable Metric Learning for Deflating Data Bias
- Title(参考訳): データバイアスの低減のための説明可能なメトリクス学習
- Authors: Emma Andrews, Prabhat Mishra,
- Abstract要約: 本稿では,画像の階層的なセマンティックセマンティックセマンティクスを構築し,解釈性を向上させるための説明可能なメトリクス学習フレームワークを提案する。
提案手法により,2つの画像間のセマンティックセグメントに基づくより人間的に理解可能な類似度測定が可能となる。
- 参考スコア(独自算出の注目度): 2.977255700811213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image classification is an essential part of computer vision which assigns a given input image to a specific category based on the similarity evaluation within given criteria. While promising classifiers can be obtained through deep learning models, these approaches lack explainability, where the classification results are hard to interpret in a human-understandable way. In this paper, we present an explainable metric learning framework, which constructs hierarchical levels of semantic segments of an image for better interpretability. The key methodology involves a bottom-up learning strategy, starting by training the local metric learning model for the individual segments and then combining segments to compose comprehensive metrics in a tree. Specifically, our approach enables a more human-understandable similarity measurement between two images based on the semantic segments within it, which can be utilized to generate new samples to reduce bias in a training dataset. Extensive experimental evaluation demonstrates that the proposed approach can drastically improve model accuracy compared with state-of-the-art methods.
- Abstract(参考訳): 画像分類は、与えられた基準内での類似性評価に基づいて、与えられた入力画像を特定のカテゴリに割り当てるコンピュータビジョンの不可欠な部分である。
有望な分類器は深層学習モデルによって得ることができるが、これらの手法には説明可能性がない。
本稿では,画像の階層的なセマンティックセマンティックセマンティックス(セマンティックス,セマンティックス,セマンティックス,セマンティックス,セマンティックス)を構成する,説明可能なメトリクス学習フレームワークを提案する。
主要な方法論はボトムアップの学習戦略で、まず個々のセグメントの局所的なメトリック学習モデルをトレーニングし、次にセグメントを組み合わせてツリーに包括的なメトリクスを構成する。
具体的には、トレーニングデータセットのバイアスを低減するために新しいサンプルを生成するために、内部のセマンティックセグメントに基づいて、2つの画像間のより人間的に理解可能な類似度測定を可能にする。
大規模実験により,提案手法は最先端手法と比較してモデル精度を大幅に向上できることが示された。
関連論文リスト
- LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations [4.680881326162484]
本稿では,新しいインスタンス識別手法と適応型損失関数を用いた表現学習における意味的特徴の解消を目的としたフレームワークであるLeOCLRを紹介する。
我々のアプローチは、ベースラインモデルと比較して、異なるデータセット間の表現学習を一貫して改善します。
論文 参考訳(メタデータ) (2024-03-11T15:33:32Z) - Enhancing Instance-Level Image Classification with Set-Level Labels [12.778150812879034]
設定レベルラベルを活用することで、インスタンスレベルの画像分類を強化する新しい手法を提案する。
自然画像データセットと病理画像データセットの2つのカテゴリについて実験を行った。
本アルゴリズムは,病理画像分類ベンチマークにおいて最強の基準値と比較して,分類精度が13%向上した。
論文 参考訳(メタデータ) (2023-11-09T03:17:03Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Semantic Clustering based Deduction Learning for Image Recognition and
Classification [19.757743366620613]
本稿では,人間の脳の学習・思考過程を模倣した意味的クラスタリングに基づく推論学習を提案する。
提案手法は広範な実験を通じて理論的,実証的に支持される。
論文 参考訳(メタデータ) (2021-12-25T01:31:21Z) - Interpretable and Interactive Deep Multiple Instance Learning for Dental
Caries Classification in Bitewing X-rays [6.98282810587309]
本稿では,深層複数インスタンス学習に基づくシンプルで効率的な画像分類アーキテクチャを提案する。
まず、画像レベルの弱いラベルで訓練されているにもかかわらず、局所的なパッチ分類確率のヒートマップを出力する。
既存の手法とは対照的に、人間のユーザは予測を忠実に解釈し、モデルと対話してどのリージョンに参加するかを決定することができる。
論文 参考訳(メタデータ) (2021-12-17T14:09:27Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
腹部臓器分節の文脈におけるラベルの重複から学ぶためのいくつかの方法を提案する。
半教師付きアプローチと適応的クロスエントロピー損失を組み合わせることで、不均一な注釈付きデータをうまく活用できることが判明した。
論文 参考訳(メタデータ) (2021-07-13T09:22:24Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
ごく少数の参照サンプルに基づいて,クエリサンプル表現を最適化し,高速に適応する新しい数ショット学習手法を提案する。
実験で実証したように,提案モデルでは,様々なベンチマーク数ショット分類と微粒化認識データセットを用いて,最先端の分類結果を達成している。
論文 参考訳(メタデータ) (2020-08-06T05:52:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。