Collectively induced transparency and absorption in waveguide QED with Bragg atom arrays
- URL: http://arxiv.org/abs/2407.04927v1
- Date: Sat, 6 Jul 2024 02:30:54 GMT
- Title: Collectively induced transparency and absorption in waveguide QED with Bragg atom arrays
- Authors: Haolei Cheng, Wei Nie,
- Abstract summary: We study collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies.
For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states.
We find collectively induced absorption (CIA) by studying the influence of free-space dissipation on photon transport.
- Score: 0.5463417677777277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies. For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption (CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide QED systems.
Related papers
- Tunable photon scattering by an atom dimer coupled to a band edge of a photonic crystal waveguide [0.0]
Quantum emitters trapped near photonic crystal waveguides have emerged as an exciting platform for realizing novel quantum matter-light interfaces.
We study tunable photon scattering in a photonic crystal waveguide coupled to an atom dimer with an arbitrary spatial separation.
arXiv Detail & Related papers (2024-09-30T13:57:58Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Observation of superradiant bursts in a cascaded quantum system [0.0]
Dicke superradiance describes the collective radiative decay of a fully inverted ensemble of two-level atoms.
We experimentally investigate this effect for a chiral, i.e.,direction-dependent light--matter coupling.
Our results shed light on the collective radiative dynamics of cascaded quantum many-body systems.
arXiv Detail & Related papers (2022-11-16T14:36:10Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Down-conversion of a single photon as a probe of many-body localization [0.0]
In a non-linear medium, even a single photon would decay by down-converting (splitting) into lower frequency photons with the same total energy.
In this case, the photon's fate becomes the long-standing question of many-body localization (MBL)
Our result introduces a new platform to explore fundamentals of MBL without having to control many atoms or qubits.
arXiv Detail & Related papers (2022-03-31T17:11:12Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Super- and subradiance by entangled free particles [0.0]
We show how a pair of path-entangled electrons can demonstrate either super- or subradiant light emission.
By choosing different free-electron Bell-states, the spectrum and emission pattern of the light can be reshaped.
Our findings suggest that light emission can be sensitive to the explicit quantum state of the emitting matter wave.
arXiv Detail & Related papers (2020-11-04T21:26:44Z) - Collective emission of photons from dense, dipole-dipole interacting
atomic ensembles [0.0]
We study the collective radiation properties of cold, trapped ensembles of atoms.
We find that the emission rate of a photon from an excited atomic ensemble is strongly enhanced for an elongated cloud.
arXiv Detail & Related papers (2020-09-18T06:44:02Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.