論文の概要: Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations
- arxiv url: http://arxiv.org/abs/2407.04955v1
- Date: Sat, 6 Jul 2024 04:36:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:47:42.834028
- Title: Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations
- Title(参考訳): 学習モダリティによる非同期マルチモーダルビデオシーケンスフュージョン-排他的および非依存的表現
- Authors: Dingkang Yang, Mingcheng Li, Linhao Qu, Kun Yang, Peng Zhai, Song Wang, Lihua Zhang,
- Abstract要約: 本稿では,モダリティ学習のためのマルチモーダル融合手法を提案する。
我々は、モーダル内の信頼性のあるコンテキストダイナミクスをキャプチャする予測的自己アテンションモジュールを導入する。
階層的クロスモーダルアテンションモジュールは、モダリティ間の価値ある要素相関を探索するために設計されている。
両識別器戦略が提示され、異なる表現を敵対的に生成することを保証する。
- 参考スコア(独自算出の注目度): 19.731611716111566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding human intentions (e.g., emotions) from videos has received considerable attention recently. Video streams generally constitute a blend of temporal data stemming from distinct modalities, including natural language, facial expressions, and auditory clues. Despite the impressive advancements of previous works via attention-based paradigms, the inherent temporal asynchrony and modality heterogeneity challenges remain in multimodal sequence fusion, causing adverse performance bottlenecks. To tackle these issues, we propose a Multimodal fusion approach for learning modality-Exclusive and modality-Agnostic representations (MEA) to refine multimodal features and leverage the complementarity across distinct modalities. On the one hand, MEA introduces a predictive self-attention module to capture reliable context dynamics within modalities and reinforce unique features over the modality-exclusive spaces. On the other hand, a hierarchical cross-modal attention module is designed to explore valuable element correlations among modalities over the modality-agnostic space. Meanwhile, a double-discriminator strategy is presented to ensure the production of distinct representations in an adversarial manner. Eventually, we propose a decoupled graph fusion mechanism to enhance knowledge exchange across heterogeneous modalities and learn robust multimodal representations for downstream tasks. Numerous experiments are implemented on three multimodal datasets with asynchronous sequences. Systematic analyses show the necessity of our approach.
- Abstract(参考訳): ビデオから人間の意図(例えば感情)を理解することは、最近かなりの注目を集めている。
ビデオストリームは一般的に、自然言語、表情、聴覚的手がかりなど、異なるモーダル性に由来する時間データのブレンドを構成する。
注意に基づくパラダイムによる先行研究の顕著な進歩にもかかわらず、本質的に時間的非同期性と不均一性の課題はマルチモーダルシーケンスの融合に残っており、パフォーマンスのボトルネックの原因となっている。
これらの課題に対処するために,モーダリティ学習のためのマルチモーダル融合手法を提案する。
一方、MEAは、モダリティ内の信頼性のあるコンテキストダイナミクスを捕捉し、モダリティ排他的空間上のユニークな特徴を補強する予測自己アテンションモジュールを導入している。
一方、階層的クロスモーダルアテンションモジュールは、モダリティ-非依存空間上のモダリティ間の価値ある要素相関を探索するために設計されている。
一方、異なる表現の対角的な生成を保証するために、二重識別器戦略が提示される。
最終的に、不均一なモダリティ間の知識交換を強化し、下流タスクの堅牢なマルチモーダル表現を学習する疎結合グラフ融合機構を提案する。
非同期シーケンスを持つ3つのマルチモーダルデータセット上で多数の実験を行う。
システム分析は我々のアプローチの必要性を示している。
関連論文リスト
- TCAN: Text-oriented Cross Attention Network for Multimodal Sentiment Analysis [34.28164104577455]
言語・視覚・音響モダリティを活用したマルチモーダル感性分析(MSA)の試み
過去の研究は、主に表現学習技術と特徴融合戦略の改善に焦点を当てた。
テキスト指向のクロスアテンションネットワーク(TCAN)を導入し,MSAにおけるテキストモダリティの主要な役割を強調した。
論文 参考訳(メタデータ) (2024-04-06T07:56:09Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - MIR-GAN: Refining Frame-Level Modality-Invariant Representations with
Adversarial Network for Audio-Visual Speech Recognition [23.042478625584653]
フレームレベルのモダリティ不変表現(MIR-GAN)を洗練するための逆ネットワークを提案する。
特に,フレームレベルのモダリティ不変表現(MIR-GAN)を洗練するための逆ネットワークを提案する。
論文 参考訳(メタデータ) (2023-06-18T14:02:20Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
本稿では,「モダリティ変換」タスクと「マルチモダリティ生成」タスクの両方を実行することができる統一型マルチモーダル生成モデルを提案する。
具体的には,マルチモーダル信号の離散拡散過程を統一遷移行列を用いて統一する。
提案手法は, 様々な生成タスクにおいて, 最先端のソリューションと同等に動作可能である。
論文 参考訳(メタデータ) (2022-11-27T14:46:01Z) - Audio-Visual Fusion for Emotion Recognition in the Valence-Arousal Space
Using Joint Cross-Attention [15.643176705932396]
本稿では, A-V 融合のための連成連成連成連接モデルを提案し, A-V のモダリティ間で有意な特徴を抽出する。
ジョイント特徴表現と個々のモダリティの相関に基づいて、クロスアテンション重みを計算する。
以上の結果から,我々の連立アテンショナルA-V融合モデルが,最先端のアプローチより優れたコスト効率のソリューションとなることが示唆された。
論文 参考訳(メタデータ) (2022-09-19T15:01:55Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
モーダル間の相互関係を考慮したマルチモーダル階層選択変換器(mhsf)モデルを提案する。
提案したmhsfモデルの汎用性を,事前学習+微調整および新鮮トレーニング戦略を用いて評価した。
論文 参考訳(メタデータ) (2021-08-11T09:59:34Z) - MISA: Modality-Invariant and -Specific Representations for Multimodal
Sentiment Analysis [48.776247141839875]
本稿では,2つの異なる部分空間に各モダリティを投影する新しいフレームワーク MISA を提案する。
最初の部分空間はモダリティ不変(modality-invariant)であり、モダリティにまたがる表現はその共通点を学び、モダリティギャップを減少させる。
一般的な感情分析ベンチマークであるMOSIとMOSEIの実験は、最先端モデルよりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2020-05-07T15:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。