論文の概要: ZOBNN: Zero-Overhead Dependable Design of Binary Neural Networks with Deliberately Quantized Parameters
- arxiv url: http://arxiv.org/abs/2407.04964v1
- Date: Sat, 6 Jul 2024 05:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:47:42.818683
- Title: ZOBNN: Zero-Overhead Dependable Design of Binary Neural Networks with Deliberately Quantized Parameters
- Title(参考訳): ZOBNN: 量子化パラメータを持つ二元ニューラルネットワークのゼロオーバーヘッド依存設計
- Authors: Behnam Ghavami, Mohammad Shahidzadeh, Lesley Shannon, Steve Wilton,
- Abstract要約: 本稿では,低精度ニューラルネットワークの3番目の利点として,耐故障性の改善について紹介する。
本稿では,メモリ障害がBNN(State-of-the-art binary neural network)に与える影響を包括的解析により検討する。
本稿では,新しい均一量子化手法により,フロートパラメータの範囲を制限することにより,BNNの信頼性を向上させる手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-precision weights and activations in deep neural networks (DNNs) outperform their full-precision counterparts in terms of hardware efficiency. When implemented with low-precision operations, specifically in the extreme case where network parameters are binarized (i.e. BNNs), the two most frequently mentioned benefits of quantization are reduced memory consumption and a faster inference process. In this paper, we introduce a third advantage of very low-precision neural networks: improved fault-tolerance attribute. We investigate the impact of memory faults on state-of-the-art binary neural networks (BNNs) through comprehensive analysis. Despite the inclusion of floating-point parameters in BNN architectures to improve accuracy, our findings reveal that BNNs are highly sensitive to deviations in these parameters caused by memory faults. In light of this crucial finding, we propose a technique to improve BNN dependability by restricting the range of float parameters through a novel deliberately uniform quantization. The introduced quantization technique results in a reduction in the proportion of floating-point parameters utilized in the BNN, without incurring any additional computational overheads during the inference stage. The extensive experimental fault simulation on the proposed BNN architecture (i.e. ZOBNN) reveal a remarkable 5X enhancement in robustness compared to conventional floating-point DNN. Notably, this improvement is achieved without incurring any computational overhead. Crucially, this enhancement comes without computational overhead. \ToolName~excels in critical edge applications characterized by limited computational resources, prioritizing both dependability and real-time performance.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の低精度重みとアクティベーションは、ハードウェア効率の点で、その完全精度よりも優れています。
ネットワークパラメータが二項化される極端な場合(BNNなど)に、低精度な操作で実装される場合、量子化の2つの最もよく言及される利点は、メモリ消費の削減とより高速な推論プロセスである。
本稿では,低精度ニューラルネットワークの3番目の利点として,耐故障特性の改善について紹介する。
本稿では,メモリ障害がBNN(State-of-the-art binary neural network)に与える影響を包括的解析により検討する。
精度向上のために,BNNアーキテクチャに浮動小数点パラメータが組み込まれているにもかかわらず,BNNはメモリ障害に起因するパラメータの偏差に非常に敏感であることがわかった。
この決定的な発見を踏まえて,本研究では,新たな一様量子化手法により,フロートパラメータの範囲を制限することにより,BNNの信頼性を向上させる手法を提案する。
導入された量子化技術は、推論段階で計算オーバーヘッドを発生させることなく、BNNで使用される浮動小数点パラメータの割合を減少させる。
提案したBNNアーキテクチャ(ZOBNN)の広範な実験的故障シミュレーションにより,従来の浮動小数点DNNと比較して,ロバスト性が顕著に向上した。
特に、この改善は計算オーバーヘッドを発生させることなく達成される。
重要な点として、この拡張は計算オーバーヘッドを伴わない。
クリティカルエッジアプリケーションにおける \ToolName~excels は、計算資源が限られており、信頼性とリアルタイムパフォーマンスの両方を優先している。
関連論文リスト
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDenseは、効率よく正確な密度予測タスクのために設計された一般化されたバイナリニューラルネットワーク(BNN)である。
BiDenseは2つの重要なテクニックを取り入れている: 分散適応バイナリー (DAB) とチャネル適応完全精度バイパス (CFB) である。
論文 参考訳(メタデータ) (2024-11-15T16:46:04Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Compacting Binary Neural Networks by Sparse Kernel Selection [58.84313343190488]
本稿は,BNNにおけるバイナリカーネルの分散化がほぼ不可能であることを示すものである。
我々は、選択過程をエンドツーエンドに最適化するだけでなく、選択したコードワードの非反復的占有を維持できる置換ストレートスルー推定器(PSTE)を開発した。
実験により,提案手法はモデルサイズとビット幅の計算コストの両方を削減し,同等の予算下での最先端のBNNと比較して精度の向上を実現する。
論文 参考訳(メタデータ) (2023-03-25T13:53:02Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
本稿では,連続パラメータを低ビットの2値に量子化する2乗量子化法を提案する。
これにより、高価な乗算演算を除去し、低ビット重みを使用すれば計算の複雑さを低減できる。
論文 参考訳(メタデータ) (2022-07-15T14:34:22Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - FTBNN: Rethinking Non-linearity for 1-bit CNNs and Going Beyond [23.5996182207431]
本稿では,二項化畳み込み過程が,その誤差を最小限に抑えるために線形性を増大させ,BNNの識別能力を損なうことを示す。
我々は、その矛盾を修正するために、適切な非線形モジュールを再検討し、調整することで、最先端のパフォーマンスを実現する強力なベースラインに繋がる。
論文 参考訳(メタデータ) (2020-10-19T08:11:48Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。