Multi-agent Off-policy Actor-Critic Reinforcement Learning for Partially Observable Environments
- URL: http://arxiv.org/abs/2407.04974v1
- Date: Sat, 6 Jul 2024 06:51:14 GMT
- Title: Multi-agent Off-policy Actor-Critic Reinforcement Learning for Partially Observable Environments
- Authors: Ainur Zhaikhan, Ali H. Sayed,
- Abstract summary: This study proposes the use of a social learning method to estimate a global state within a multi-agent off-policy actor-critic algorithm for reinforcement learning.
We show that the difference between final outcomes, obtained when the global state is fully observed versus estimated through the social learning method, is $varepsilon$-bounded when an appropriate number of iterations of social learning updates are implemented.
- Score: 30.280532078714455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes the use of a social learning method to estimate a global state within a multi-agent off-policy actor-critic algorithm for reinforcement learning (RL) operating in a partially observable environment. We assume that the network of agents operates in a fully-decentralized manner, possessing the capability to exchange variables with their immediate neighbors. The proposed design methodology is supported by an analysis demonstrating that the difference between final outcomes, obtained when the global state is fully observed versus estimated through the social learning method, is $\varepsilon$-bounded when an appropriate number of iterations of social learning updates are implemented. Unlike many existing dec-POMDP-based RL approaches, the proposed algorithm is suitable for model-free multi-agent reinforcement learning as it does not require knowledge of a transition model. Furthermore, experimental results illustrate the efficacy of the algorithm and demonstrate its superiority over the current state-of-the-art methods.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
We propose an implicit model-based multi-agent reinforcement learning method based on value decomposition methods.
Under this method, agents can interact with the learned virtual environment and evaluate the current state value according to imagined future states.
arXiv Detail & Related papers (2022-04-20T12:16:27Z) - Exploration with Multi-Sample Target Values for Distributional
Reinforcement Learning [20.680417111485305]
We introduce multi-sample target values (MTV) for distributional RL, as a principled replacement for single-sample target value estimation.
The improved distributional estimates lend themselves to UCB-based exploration.
We evaluate our approach on a range of continuous control tasks and demonstrate state-of-the-art model-free performance on difficult tasks such as Humanoid control.
arXiv Detail & Related papers (2022-02-06T03:27:05Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Model-free Representation Learning and Exploration in Low-rank MDPs [64.72023662543363]
We present the first model-free representation learning algorithms for low rank MDPs.
Key algorithmic contribution is a new minimax representation learning objective.
Result can accommodate general function approximation to scale to complex environments.
arXiv Detail & Related papers (2021-02-14T00:06:54Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.