Enabling Causal Discovery in Post-Nonlinear Models with Normalizing Flows
- URL: http://arxiv.org/abs/2407.04980v2
- Date: Thu, 29 Aug 2024 00:34:59 GMT
- Title: Enabling Causal Discovery in Post-Nonlinear Models with Normalizing Flows
- Authors: Nu Hoang, Bao Duong, Thin Nguyen,
- Abstract summary: Post-nonlinear (PNL) causal models stand out as a versatile and adaptable framework for modeling causal relationships.
We introduce CAF-PoNo, harnessing the power of the normalizing flows architecture to enforce the crucial invertibility constraint in PNL models.
Our method precisely reconstructs the hidden noise, which plays a vital role in cause-effect identification.
- Score: 6.954510776782872
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-nonlinear (PNL) causal models stand out as a versatile and adaptable framework for modeling intricate causal relationships. However, accurately capturing the invertibility constraint required in PNL models remains challenging in existing studies. To address this problem, we introduce CAF-PoNo (Causal discovery via Normalizing Flows for Post-Nonlinear models), harnessing the power of the normalizing flows architecture to enforce the crucial invertibility constraint in PNL models. Through normalizing flows, our method precisely reconstructs the hidden noise, which plays a vital role in cause-effect identification through statistical independence testing. Furthermore, the proposed approach exhibits remarkable extensibility, as it can be seamlessly expanded to facilitate multivariate causal discovery via causal order identification, empowering us to efficiently unravel complex causal relationships. Extensive experimental evaluations on both simulated and real datasets consistently demonstrate that the proposed method outperforms several state-of-the-art approaches in both bivariate and multivariate causal discovery tasks.
Related papers
- Continuous Bayesian Model Selection for Multivariate Causal Discovery [22.945274948173182]
Current causal discovery approaches require restrictive model assumptions or assume access to interventional data to ensure structure identifiability.
Recent work has shown that Bayesian model selection can greatly improve accuracy by exchanging restrictive modelling for more flexible assumptions.
We demonstrate the competitiveness of our approach on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-11-15T12:55:05Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Rank-Based Causal Discovery for Post-Nonlinear Models [2.4493299476776778]
Post-nonlinear (PNL) causal models constitute one of the most flexible options for such restricted subclasses.
We propose a new approach for PNL causal discovery that uses rank-based methods to estimate the functional parameters.
arXiv Detail & Related papers (2023-02-23T21:19:23Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.