The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness
- URL: http://arxiv.org/abs/2401.14027v1
- Date: Thu, 25 Jan 2024 09:18:51 GMT
- Title: The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness
- Authors: Mengyao Du, Miao Zhang, Yuwen Pu, Kai Xu, Shouling Ji, Quanjun Yin
- Abstract summary: Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
- Score: 50.52507648690234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To tackle the scarcity and privacy issues associated with domain-specific
datasets, the integration of federated learning in conjunction with fine-tuning
has emerged as a practical solution. However, our findings reveal that
federated learning has the risk of skewing fine-tuning features and
compromising the out-of-distribution robustness of the model. By introducing
three robustness indicators and conducting experiments across diverse robust
datasets, we elucidate these phenomena by scrutinizing the diversity,
transferability, and deviation within the model feature space. To mitigate the
negative impact of federated learning on model robustness, we introduce GNP, a
\underline{G}eneral \underline{N}oisy \underline{P}rojection-based robust
algorithm, ensuring no deterioration of accuracy on the target distribution.
Specifically, the key strategy for enhancing model robustness entails the
transfer of robustness from the pre-trained model to the fine-tuned model,
coupled with adding a small amount of Gaussian noise to augment the
representative capacity of the model. Comprehensive experimental results
demonstrate that our approach markedly enhances the robustness across diverse
scenarios, encompassing various parameter-efficient fine-tuning methods and
confronting different levels of data heterogeneity.
Related papers
- On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-08-17T10:05:05Z) - Exploring the Interplay of Interpretability and Robustness in Deep Neural Networks: A Saliency-guided Approach [3.962831477787584]
Adversarial attacks pose a significant challenge to deploying deep learning models in safety-critical applications.
Maintaining model robustness while ensuring interpretability is vital for fostering trust and comprehension in these models.
This study investigates the impact of Saliency-guided Training on model robustness.
arXiv Detail & Related papers (2024-05-10T07:21:03Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Robust Direct Learning for Causal Data Fusion [14.462235940634969]
We provide a framework for integrating multi-source data that separates the treatment effect from other nuisance functions.
We also propose a causal information-aware weighting function motivated by theoretical insights from the semiparametric efficiency theory.
arXiv Detail & Related papers (2022-11-01T03:33:22Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z) - Enhancing Model Robustness and Fairness with Causality: A Regularization
Approach [15.981724441808147]
Recent work has raised concerns on the risk of spurious correlations and unintended biases in machine learning models.
We propose a simple and intuitive regularization approach to integrate causal knowledge during model training.
We build a predictive model that relies more on causal features and less on non-causal features.
arXiv Detail & Related papers (2021-10-03T02:49:33Z) - High-Robustness, Low-Transferability Fingerprinting of Neural Networks [78.2527498858308]
This paper proposes Characteristic Examples for effectively fingerprinting deep neural networks.
It features high-robustness to the base model against model pruning as well as low-transferability to unassociated models.
arXiv Detail & Related papers (2021-05-14T21:48:23Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.