The Solution for Language-Enhanced Image New Category Discovery
- URL: http://arxiv.org/abs/2407.04994v1
- Date: Sat, 6 Jul 2024 08:09:29 GMT
- Title: The Solution for Language-Enhanced Image New Category Discovery
- Authors: Haonan Xu, Dian Chao, Xiangyu Wu, Zhonghua Wan, Yang Yang,
- Abstract summary: We propose reversing the training process of CLIP and introducing the concept of Pseudo Visual Prompts.
These prompts are for each object category and pre-trained on large-scale, low-cost sentence data generated by large language models.
We then employ contrastive learning to transfer the stored visual information to the textual labels, enhancing their visual representation capacity.
- Score: 5.500122875523184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Treating texts as images, combining prompts with textual labels for prompt tuning, and leveraging the alignment properties of CLIP have been successfully applied in zero-shot multi-label image recognition. Nonetheless, relying solely on textual labels to store visual information is insufficient for representing the diversity of visual objects. In this paper, we propose reversing the training process of CLIP and introducing the concept of Pseudo Visual Prompts. These prompts are initialized for each object category and pre-trained on large-scale, low-cost sentence data generated by large language models. This process mines the aligned visual information in CLIP and stores it in class-specific visual prompts. We then employ contrastive learning to transfer the stored visual information to the textual labels, enhancing their visual representation capacity. Additionally, we introduce a dual-adapter module that simultaneously leverages knowledge from the original CLIP and new learning knowledge derived from downstream datasets. Benefiting from the pseudo visual prompts, our method surpasses the state-of-the-art not only on clean annotated text data but also on pseudo text data generated by large language models.
Related papers
- TAI++: Text as Image for Multi-Label Image Classification by Co-Learning Transferable Prompt [15.259819430801402]
We propose a pseudo-visual prompt(PVP) module for implicit visual prompt tuning to address this problem.
Specifically, we first learn the pseudo-visual prompt for each category, mining diverse visual knowledge by the well-aligned space of pre-trained vision-language models.
Experimental results on VOC2007, MS-COCO, and NUSWIDE datasets demonstrate that our method can surpass state-of-the-art(SOTA) methods.
arXiv Detail & Related papers (2024-05-11T06:11:42Z) - Unlocking the Multi-modal Potential of CLIP for Generalized Category Discovery [50.564146730579424]
We propose a Text Embedding Synthesizer (TES) to generate pseudo text embeddings for unlabelled samples.
Our method unlocks the multi-modal potentials of CLIP and outperforms the baseline methods by a large margin on all GCD benchmarks.
arXiv Detail & Related papers (2024-03-15T02:40:13Z) - Data-free Multi-label Image Recognition via LLM-powered Prompt Tuning [23.671999163027284]
This paper proposes a novel framework for multi-label image recognition without any training data.
It uses knowledge of pre-trained Large Language Model to learn prompts to adapt pretrained Vision-Language Model like CLIP to multilabel classification.
Our framework presents a new way to explore the synergies between multiple pre-trained models for novel category recognition.
arXiv Detail & Related papers (2024-03-02T13:43:32Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
One branch of methods adapts CLIP by learning prompts using visual information.
An alternative approach resorts to training-free methods by generating class descriptions from large language models.
We propose to combine the strengths of both streams by learning prompts using only text data.
arXiv Detail & Related papers (2024-01-04T18:59:49Z) - K-LITE: Learning Transferable Visual Models with External Knowledge [242.3887854728843]
K-LITE (Knowledge-augmented Language-Image Training and Evaluation) is a strategy to leverage external knowledge to build transferable visual systems.
In training, it enriches entities in natural language with WordNet and Wiktionary knowledge.
In evaluation, the natural language is also augmented with external knowledge and then used to reference learned visual concepts.
arXiv Detail & Related papers (2022-04-20T04:47:01Z) - VT-CLIP: Enhancing Vision-Language Models with Visual-guided Texts [2.0434814235659555]
Contrastive Language-Image Pre-training (CLIP) has drawn increasing attention recently for its transferable visual representation learning.
We propose to enhance CLIP via Visual-guided Texts, named VT-CLIP.
In few-shot settings, we evaluate our VT-CLIP on 11 well-known classification datasets to demonstrate its effectiveness.
arXiv Detail & Related papers (2021-12-04T18:34:24Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.