論文の概要: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- arxiv url: http://arxiv.org/abs/2407.05034v1
- Date: Sat, 6 Jul 2024 09:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:18:15.723227
- Title: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- Title(参考訳): GCON: 客観的摂動による微分プライベートグラフ畳み込みネットワーク
- Authors: Jianxin Wei, Yizheng Zhu, Xiaokui Xiao, Ergute Bao, Yin Yang, Kuntai Cai, Beng Chin Ooi,
- Abstract要約: Graph Convolutional Networks (GCNs)は、グラフ分析に幅広い応用がある一般的な機械学習モデルである。
基礎となるグラフデータが対人関係などの機密情報を含んでいる場合、プライバシー保護措置なしで訓練されたGCNを利用してプライベートデータを抽出することができる。
本稿では,GCNをエッジ差分プライバシでトレーニングするための,新しい効果的なソリューションであるGCONを提案する。
- 参考スコア(独自算出の注目度): 27.279817693305183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are a popular machine learning model with a wide range of applications in graph analytics, including healthcare, transportation, and finance. Similar to other neural networks, a GCN may memorize parts of the training data through its model weights. Thus, when the underlying graph data contains sensitive information such as interpersonal relationships, a GCN trained without privacy-protection measures could be exploited to extract private data, leading to potential violations of privacy regulations such as GDPR. To defend against such attacks, a promising approach is to train the GCN with differential privacy (DP), which is a rigorous framework that provides strong privacy protection by injecting random noise into the trained model weights. However, training a large graph neural network under DP is a highly challenging task. Existing solutions either introduce random perturbations in the graph topology, which leads to severe distortions of the network's message passing, or inject randomness into each neighborhood aggregation operation, which leads to a high noise scale when the GCN performs multiple levels of aggregations. Motivated by this, we propose GCON, a novel and effective solution for training GCNs with edge differential privacy. The main idea is to (i) convert the GCN training process into a convex optimization problem, and then (ii) apply the classic idea of perturbing the objective function to satisfy DP. Extensive experiments using multiple benchmark datasets demonstrate GCON's consistent and superior performance over existing solutions in a wide variety of settings.
- Abstract(参考訳): Graph Convolutional Networks(GCNs)は、医療、交通、金融など、グラフ分析の幅広い応用で人気のある機械学習モデルである。
他のニューラルネットワークと同様に、GCNはそのモデルの重みを通してトレーニングデータの一部を記憶することができる。
したがって、基礎となるグラフデータが対人関係などの機密情報を含んでいる場合、プライバシー保護措置なしで訓練されたGCNを利用してプライベートデータを抽出し、GDPRのようなプライバシー規制に違反する可能性がある。
このような攻撃から守るためには、トレーニングされたモデルの重みにランダムノイズを注入することで、強力なプライバシ保護を提供する厳格なフレームワークである差分プライバシー(DP)でGCNをトレーニングする、という有望なアプローチがある。
しかし、DPの下で大きなグラフニューラルネットワークをトレーニングするのは非常に難しい作業である。
既存のソリューションでは、グラフトポロジにランダムな摂動を導入するか、ネットワークのメッセージパロジの激しい歪みを引き起こすか、あるいは各近傍のアグリゲーション操作にランダム性を注入し、GCNが複数のアグリゲーションを実行すると、高いノイズスケールが発生する。
そこで我々は,GCNをエッジ差分プライバシでトレーニングするための新しい,効果的なソリューションであるGCONを提案する。
一番のアイデアは
(i)GCNトレーニングプロセスを凸最適化問題に変換し、
(2)DPを満たすために目的関数を摂動する古典的考え方を適用する。
複数のベンチマークデータセットを使用した大規模な実験では、GCONが既存のソリューションに対して、さまざまな設定で一貫性と優れたパフォーマンスを示している。
関連論文リスト
- Prompt-based Unifying Inference Attack on Graph Neural Networks [24.85661326294946]
グラフニューラルネットワーク(GNN)上での新規なPromptベースの統一推論攻撃フレームワークを提案する。
ProIAは、事前学習中にグラフの重要なトポロジ情報を保持し、推論攻撃モデルの背景知識を高める。
次に、統一的なプロンプトを利用し、ダウンストリームアタックにおいてタスク関連知識に適応するために、さらなる混乱要因を導入する。
論文 参考訳(メタデータ) (2024-12-20T09:56:17Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Differentially Private Decoupled Graph Convolutions for Multigranular
Topology Protection [38.96828804683783]
GNNは、モデル予測を通じて、機密性の高いユーザ情報やインタラクションを不注意に公開することができる。
2つの主な理由から、GNNに標準のDPアプローチを適用することは推奨できない。
本稿では,グラフ学習に適したグラフ微分プライバシー(GDP)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-12T19:29:06Z) - ProGAP: Progressive Graph Neural Networks with Differential Privacy
Guarantees [8.79398901328539]
グラフニューラルネットワーク(GNN)は、グラフを学習するための一般的なツールとなっているが、広く使われているため、プライバシの懸念が高まる。
本稿では,ProGAPと呼ばれる新たなGNNを提案し,プログレッシブトレーニング手法を用いて,そのような精度とプライバシのトレードオフを改善する。
論文 参考訳(メタデータ) (2023-04-18T12:08:41Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。