論文の概要: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- arxiv url: http://arxiv.org/abs/2407.05034v1
- Date: Sat, 6 Jul 2024 09:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 21:18:15.723227
- Title: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- Title(参考訳): GCON: 客観的摂動による微分プライベートグラフ畳み込みネットワーク
- Authors: Jianxin Wei, Yizheng Zhu, Xiaokui Xiao, Ergute Bao, Yin Yang, Kuntai Cai, Beng Chin Ooi,
- Abstract要約: Graph Convolutional Networks (GCNs)は、グラフ分析に幅広い応用がある一般的な機械学習モデルである。
基礎となるグラフデータが対人関係などの機密情報を含んでいる場合、プライバシー保護措置なしで訓練されたGCNを利用してプライベートデータを抽出することができる。
本稿では,GCNをエッジ差分プライバシでトレーニングするための,新しい効果的なソリューションであるGCONを提案する。
- 参考スコア(独自算出の注目度): 27.279817693305183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are a popular machine learning model with a wide range of applications in graph analytics, including healthcare, transportation, and finance. Similar to other neural networks, a GCN may memorize parts of the training data through its model weights. Thus, when the underlying graph data contains sensitive information such as interpersonal relationships, a GCN trained without privacy-protection measures could be exploited to extract private data, leading to potential violations of privacy regulations such as GDPR. To defend against such attacks, a promising approach is to train the GCN with differential privacy (DP), which is a rigorous framework that provides strong privacy protection by injecting random noise into the trained model weights. However, training a large graph neural network under DP is a highly challenging task. Existing solutions either introduce random perturbations in the graph topology, which leads to severe distortions of the network's message passing, or inject randomness into each neighborhood aggregation operation, which leads to a high noise scale when the GCN performs multiple levels of aggregations. Motivated by this, we propose GCON, a novel and effective solution for training GCNs with edge differential privacy. The main idea is to (i) convert the GCN training process into a convex optimization problem, and then (ii) apply the classic idea of perturbing the objective function to satisfy DP. Extensive experiments using multiple benchmark datasets demonstrate GCON's consistent and superior performance over existing solutions in a wide variety of settings.
- Abstract(参考訳): Graph Convolutional Networks(GCNs)は、医療、交通、金融など、グラフ分析の幅広い応用で人気のある機械学習モデルである。
他のニューラルネットワークと同様に、GCNはそのモデルの重みを通してトレーニングデータの一部を記憶することができる。
したがって、基礎となるグラフデータが対人関係などの機密情報を含んでいる場合、プライバシー保護措置なしで訓練されたGCNを利用してプライベートデータを抽出し、GDPRのようなプライバシー規制に違反する可能性がある。
このような攻撃から守るためには、トレーニングされたモデルの重みにランダムノイズを注入することで、強力なプライバシ保護を提供する厳格なフレームワークである差分プライバシー(DP)でGCNをトレーニングする、という有望なアプローチがある。
しかし、DPの下で大きなグラフニューラルネットワークをトレーニングするのは非常に難しい作業である。
既存のソリューションでは、グラフトポロジにランダムな摂動を導入するか、ネットワークのメッセージパロジの激しい歪みを引き起こすか、あるいは各近傍のアグリゲーション操作にランダム性を注入し、GCNが複数のアグリゲーションを実行すると、高いノイズスケールが発生する。
そこで我々は,GCNをエッジ差分プライバシでトレーニングするための新しい,効果的なソリューションであるGCONを提案する。
一番のアイデアは
(i)GCNトレーニングプロセスを凸最適化問題に変換し、
(2)DPを満たすために目的関数を摂動する古典的考え方を適用する。
複数のベンチマークデータセットを使用した大規模な実験では、GCONが既存のソリューションに対して、さまざまな設定で一貫性と優れたパフォーマンスを示している。
関連論文リスト
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - LinGCN: Structural Linearized Graph Convolutional Network for
Homomorphically Encrypted Inference [19.5669231249754]
本稿では,乗算深度を低減し,HEに基づくGCN推論の性能を最適化するLinGCNを提案する。
注目すべきは、LinGCNはCryptoGCNと比較して14.2倍のレイテンシ向上を実現し、推論精度は75%、乗算深度は顕著に減少することである。
論文 参考訳(メタデータ) (2023-09-25T17:56:54Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
グラフ畳み込みネットワーク(GCN)は、隣人層の情報を層ごとに集約することでノードの埋め込みを生成する。
GCNの高計算とメモリコストにより、大きなグラフのトレーニングが不可能になる。
MG-GCNと呼ばれる新しいモデルでは、精度、トレーニング速度、収束速度、メモリコストの点で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-11-17T14:51:57Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Locally Private Graph Neural Networks [12.473486843211573]
ノードデータプライバシ(ノードデータプライバシ)の問題として,グラフノードが機密性の高いデータをプライベートに保持する可能性について検討する。
我々は、正式なプライバシー保証を備えたプライバシー保護アーキテクチャに依存しないGNN学習アルゴリズムを開発した。
実世界のデータセット上で行った実験は、我々の手法が低プライバシー損失で満足度の高い精度を維持することができることを示した。
論文 参考訳(メタデータ) (2020-06-09T22:36:06Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。