論文の概要: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- arxiv url: http://arxiv.org/abs/2407.05034v2
- Date: Thu, 30 Jan 2025 14:11:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 22:50:03.835922
- Title: GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
- Title(参考訳): GCON: 客観的摂動による微分プライベートグラフ畳み込みネットワーク
- Authors: Jianxin Wei, Yizheng Zhu, Xiaokui Xiao, Ergute Bao, Yin Yang, Kuntai Cai, Beng Chin Ooi,
- Abstract要約: Graph Convolutional Networks (GCNs)は、グラフ分析に幅広い応用がある一般的な機械学習モデルである。
プライバシー保護措置なしで訓練されたGCNは、トレーニングデータ内のプライベートな対人関係を記憶することができる。
これは、リンク攻撃によってプライバシーを侵害する重大なリスクを生じさせ、プライバシー規制に違反している可能性がある。
本稿では,GCNをエッジ差分プライバシでトレーニングするための,新しい効果的なソリューションであるGCONを提案する。
- 参考スコア(独自算出の注目度): 27.279817693305183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are a popular machine learning model with a wide range of applications in graph analytics, including healthcare, transportation, and finance. However, a GCN trained without privacy protection measures may memorize private interpersonal relationships in the training data through its model parameters. This poses a substantial risk of compromising privacy through link attacks, potentially leading to violations of privacy regulations such as GDPR. To defend against such attacks, a promising approach is to train the GCN with differential privacy (DP), a rigorous framework that provides strong privacy protection by injecting random noise into the training process. However, training a GCN under DP is a highly challenging task. Existing solutions either perturb the graph topology or inject randomness into the graph convolution operations, or overestimate the amount of noise required, resulting in severe distortions of the network's message aggregation and, thus, poor model utility. Motivated by this, we propose GCON, a novel and effective solution for training GCNs with edge differential privacy. GCON leverages the classic idea of perturbing the objective function to satisfy DP and maintains an unaltered graph convolution process. Our rigorous theoretical analysis offers tight, closed-form bounds on the sensitivity of the graph convolution results and quantifies the impact of an edge modification on the trained model parameters. Extensive experiments using multiple benchmark datasets across diverse settings demonstrate the consistent superiority of GCON over existing solutions.
- Abstract(参考訳): Graph Convolutional Networks(GCNs)は、医療、交通、金融など、グラフ分析の幅広い応用で人気のある機械学習モデルである。
しかし、プライバシ保護対策なしで訓練されたGCNは、トレーニングデータ内のプライベートな対人関係をモデルパラメータを通して記憶することができる。
これはリンク攻撃によってプライバシーを侵害する重大なリスクを生じさせ、GDPRのようなプライバシー規制に違反している可能性がある。
このような攻撃を防ぐため、有望なアプローチは、トレーニングプロセスにランダムノイズを注入することで、強力なプライバシ保護を提供する厳格なフレームワークである差分プライバシ(DP)でGCNをトレーニングすることである。
しかし、DP下でのGCNのトレーニングは非常に難しい作業である。
既存のソリューションは、グラフトポロジを摂動させたり、グラフ畳み込み操作にランダム性を注入したり、必要となるノイズの量を過大評価したりする。
そこで我々は,GCNをエッジ差分プライバシでトレーニングするための新しい,効果的なソリューションであるGCONを提案する。
GCON は DP を満たすために目的関数を摂動するという古典的な考え方を活用し、未修正のグラフ畳み込みプロセスを維持している。
我々の厳密な理論的分析は、グラフ畳み込み結果の感度に厳密な閉形式境界を提供し、訓練されたモデルパラメータに対するエッジ修正の影響を定量化する。
さまざまな設定にまたがって複数のベンチマークデータセットを使用した大規模な実験は、既存のソリューションよりもGCONの一貫性のある優位性を示している。
関連論文リスト
- AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model [21.78459506259644]
本稿では,グラフの個別スキップグラフであるAdvSGMを提案する。
私たちの中核となる考え方は、敵の訓練を活用してスキップグラムを民営化し、実用性を向上させることです。
論文 参考訳(メタデータ) (2025-03-27T12:13:28Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - LinGCN: Structural Linearized Graph Convolutional Network for
Homomorphically Encrypted Inference [19.5669231249754]
本稿では,乗算深度を低減し,HEに基づくGCN推論の性能を最適化するLinGCNを提案する。
注目すべきは、LinGCNはCryptoGCNと比較して14.2倍のレイテンシ向上を実現し、推論精度は75%、乗算深度は顕著に減少することである。
論文 参考訳(メタデータ) (2023-09-25T17:56:54Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Differentially Private Decoupled Graph Convolutions for Multigranular
Topology Protection [38.96828804683783]
GNNは、モデル予測を通じて、機密性の高いユーザ情報やインタラクションを不注意に公開することができる。
2つの主な理由から、GNNに標準のDPアプローチを適用することは推奨できない。
本稿では,グラフ学習に適したグラフ微分プライバシー(GDP)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-12T19:29:06Z) - ProGAP: Progressive Graph Neural Networks with Differential Privacy
Guarantees [8.79398901328539]
グラフニューラルネットワーク(GNN)は、グラフを学習するための一般的なツールとなっているが、広く使われているため、プライバシの懸念が高まる。
本稿では,ProGAPと呼ばれる新たなGNNを提案し,プログレッシブトレーニング手法を用いて,そのような精度とプライバシのトレードオフを改善する。
論文 参考訳(メタデータ) (2023-04-18T12:08:41Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
本稿では,グラフ間のGNNの事前学習プロセスの監視を目的とした,MentorGNNというエンドツーエンドモデルを提案する。
我々は、事前学習したGNNの一般化誤差に自然かつ解釈可能な上限を導出することにより、関係データ(グラフ)に対するドメイン適応の問題に新たな光を当てた。
論文 参考訳(メタデータ) (2022-08-21T15:12:08Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
グラフ畳み込みネットワーク(GCN)は、隣人層の情報を層ごとに集約することでノードの埋め込みを生成する。
GCNの高計算とメモリコストにより、大きなグラフのトレーニングが不可能になる。
MG-GCNと呼ばれる新しいモデルでは、精度、トレーニング速度、収束速度、メモリコストの点で最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2020-11-17T14:51:57Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z) - Locally Private Graph Neural Networks [12.473486843211573]
ノードデータプライバシ(ノードデータプライバシ)の問題として,グラフノードが機密性の高いデータをプライベートに保持する可能性について検討する。
我々は、正式なプライバシー保証を備えたプライバシー保護アーキテクチャに依存しないGNN学習アルゴリズムを開発した。
実世界のデータセット上で行った実験は、我々の手法が低プライバシー損失で満足度の高い精度を維持することができることを示した。
論文 参考訳(メタデータ) (2020-06-09T22:36:06Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
グラフ表現学習は、ノード分類、予測、コミュニティ検出など、多くのグラフベースのアプリケーションで顕著な成功を収めている。
しかし,グラフ圧縮やエッジ分割などのグラフアプリケーションでは,グラフ表現学習タスクに還元することは極めて困難である。
本稿では,このようなアプリケーションの背後にあるグラフ順序付け問題に対して,新しい学習手法を用いて対処することを提案する。
論文 参考訳(メタデータ) (2020-01-18T09:14:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。