MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning
- URL: http://arxiv.org/abs/2407.05047v3
- Date: Mon, 7 Oct 2024 14:05:05 GMT
- Title: MFE-ETP: A Comprehensive Evaluation Benchmark for Multi-modal Foundation Models on Embodied Task Planning
- Authors: Min Zhang, Xian Fu, Jianye Hao, Peilong Han, Hao Zhang, Lei Shi, Hongyao Tang, Yan Zheng,
- Abstract summary: We provide an in-depth and comprehensive evaluation of the performance of MFMs on embodied task planning.
We propose a new benchmark, named MFE-ETP, characterized its complex and variable task scenarios.
Using the benchmark and evaluation platform, we evaluated several state-of-the-art MFMs and found that they significantly lag behind human-level performance.
- Score: 50.45558735526665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Multi-modal Foundation Models (MFMs) and Embodied Artificial Intelligence (EAI) have been advancing side by side at an unprecedented pace. The integration of the two has garnered significant attention from the AI research community. In this work, we attempt to provide an in-depth and comprehensive evaluation of the performance of MFM s on embodied task planning, aiming to shed light on their capabilities and limitations in this domain. To this end, based on the characteristics of embodied task planning, we first develop a systematic evaluation framework, which encapsulates four crucial capabilities of MFMs: object understanding, spatio-temporal perception, task understanding, and embodied reasoning. Following this, we propose a new benchmark, named MFE-ETP, characterized its complex and variable task scenarios, typical yet diverse task types, task instances of varying difficulties, and rich test case types ranging from multiple embodied question answering to embodied task reasoning. Finally, we offer a simple and easy-to-use automatic evaluation platform that enables the automated testing of multiple MFMs on the proposed benchmark. Using the benchmark and evaluation platform, we evaluated several state-of-the-art MFMs and found that they significantly lag behind human-level performance. The MFE-ETP is a high-quality, large-scale, and challenging benchmark relevant to real-world tasks.
Related papers
- ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
Multimodal Large Language Models (MLLMs) have brought substantial advancements in artificial intelligence.
This survey systematically reviews 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application.
arXiv Detail & Related papers (2024-09-21T15:22:26Z) - Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models [12.841405829775852]
We introduce the modality importance score (MIS) to identify bias inVidQA benchmarks and datasets.
We also propose an innovative method using state-of-the-art MLLMs to estimate the modality importance.
Our results indicate that current models do not effectively integrate information due to modality imbalance in existing datasets.
arXiv Detail & Related papers (2024-08-22T23:32:42Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning [3.651416979200174]
MMCTAgent is a novel critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks.
Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning.
arXiv Detail & Related papers (2024-05-28T16:55:41Z) - Plan of Thoughts: Heuristic-Guided Problem Solving with Large Language Models [0.0]
We formalize a planning-based approach to perform multi-step problem solving with language models.
We demonstrate a superior success rate of 89.4% on the Game of 24 task as compared to existing approaches.
arXiv Detail & Related papers (2024-04-29T18:51:17Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.
Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.