Reverse Engineered MiniFS File System
- URL: http://arxiv.org/abs/2407.05064v1
- Date: Sat, 6 Jul 2024 12:49:37 GMT
- Title: Reverse Engineered MiniFS File System
- Authors: Dmitrii Belimov, Evgenii Vinogradov,
- Abstract summary: This paper addresses the vulnerabilities inherent in Wi-Fi APs using proprietary file systems like MiniFS found in TP-Link's AC1900 WiFi router.
Through reverse engineering, we unravel the structure and operation of MiniFS, marking a significant advancement in our understanding of this previously opaque file system.
- Score: 1.2891210250935148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era where digital connectivity is increasingly foundational to daily life, the security of Wi-Fi Access Points (APs) is a critical concern. This paper addresses the vulnerabilities inherent in Wi-Fi APs, with a particular focus on those using proprietary file systems like MiniFS found in TP-Link's AC1900 WiFi router. Through reverse engineering, we unravel the structure and operation of MiniFS, marking a significant advancement in our understanding of this previously opaque file system. Our investigation reveals not only the architecture of MiniFS but also identifies several private keys and underscores a concerning lack of cryptographic protection. These findings point to broader security vulnerabilities, emphasizing the risks of security-by-obscurity practices in an interconnected environment. Our contributions are twofold: firstly, based, on the file system structure, we develop a methodology for the extraction and analysis of MiniFS, facilitating the identification and mitigation of potential vulnerabilities. Secondly, our work lays the groundwork for further research into WiFi APs' security, particularly those running on similar proprietary systems. By highlighting the critical need for transparency and community engagement in firmware analysis, this study contributes to the development of more secure network devices, thus enhancing the overall security posture of digital infrastructures.
Related papers
- A Comprehensive Framework for Building Highly Secure, Network-Connected Devices: Chip to App [1.4732811715354452]
This paper proposes a holistic approach to securing network-connected devices.
At the hardware level, we focus on secure key management, reliable random number generation, and protecting critical assets.
For secure communication, we emphasize TLS 1.3 and optimized cipher suites tailored for both standard and resource-constrained devices.
arXiv Detail & Related papers (2025-01-23T14:44:34Z) - Modern Hardware Security: A Review of Attacks and Countermeasures [1.7265013728931]
In this paper, we review the current state of vulnerabilities and mitigation strategies in contemporary computing systems.
We discuss cache side-channel attacks (including Spectre and Meltdown), power side-channel attacks (such as Simple Power Analysis), and advanced techniques like Voltage Glitching and Electromagnetic Analysis.
The paper concludes with an analysis of the RISC-V architecture's unique security challenges.
arXiv Detail & Related papers (2025-01-08T10:14:19Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - On Security Weaknesses and Vulnerabilities in Deep Learning Systems [32.14068820256729]
We specifically look into deep learning (DL) framework and perform the first systematic study of vulnerabilities in DL systems.
We propose a two-stream data analysis framework to explore vulnerability patterns from various databases.
We conducted a large-scale empirical study of 3,049 DL vulnerabilities to better understand the patterns of vulnerability and the challenges in fixing them.
arXiv Detail & Related papers (2024-06-12T23:04:13Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Privacy-Preserving Intrusion Detection in Software-defined VANET using Federated Learning with BERT [0.0]
The present study introduces a novel approach for intrusion detection using Federated Learning (FL) capabilities.
FL-BERT has yielded promising results, opening avenues for further investigation in this particular area of research.
Our results suggest that FL-BERT is a promising technique for enhancing attack detection.
arXiv Detail & Related papers (2024-01-14T18:32:25Z) - A Novel Federated Learning-Based IDS for Enhancing UAVs Privacy and Security [1.2999518604217852]
Unmanned aerial vehicles (UAVs) operating within Flying Ad-hoc Networks (FANETs) encounter security challenges due to the dynamic and distributed nature of these networks.
Previous studies predominantly focused on centralized intrusion detection, assuming a central entity responsible for storing and analyzing data from all devices.
This paper introduces the Federated Learning-based Intrusion Detection System (FL-IDS), addressing challenges encountered by centralized systems in FANETs.
arXiv Detail & Related papers (2023-12-07T08:50:25Z) - Fortress: Securing IoT Peripherals with Trusted Execution Environments [2.2476099815732518]
Internet of Things (IoT) devices often collect confidential information, such as audio and visual data, through peripheral inputs like microphones and cameras.
We propose a generic design to enhance the privacy in IoT-based systems by isolating peripheral I/O memory regions in a secure kernel space of a trusted execution environment (TEE)
The sensitive peripheral data is then securely transferred to a user-space TEE, where obfuscation mechanisms can be applied before it is relayed to third parties, e.g., the cloud.
arXiv Detail & Related papers (2023-12-05T07:12:58Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
This paper proposes a novel approach based on Zero Trust Architecture (ZTA) extended with blockchain to further enhance security.
The blockchain component serves as an immutable database for storing users' requests and is used to verify trustworthiness by analyzing and identifying potentially malicious user activities.
We discuss the framework, processes of the approach, and the experiments carried out on a testbed to validate its feasibility and applicability in the smart city context.
arXiv Detail & Related papers (2023-11-28T12:43:21Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
We present SyzTrust, the first state-aware fuzzing framework for vetting the security of resource-limited Trusted OSes.
SyzTrust adopts a hardware-assisted framework to enable fuzzing Trusted OSes directly on IoT devices.
We evaluate SyzTrust on Trusted OSes from three major vendors: Samsung, Tsinglink Cloud, and Ali Cloud.
arXiv Detail & Related papers (2023-09-26T08:11:38Z) - NAS-FAS: Static-Dynamic Central Difference Network Search for Face
Anti-Spoofing [94.89405915373857]
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems.
Existing methods rely on expert-designed networks, which may lead to a sub-optimal solution for task FAS.
Here we propose the first FAS method based on neural search (NAS), called FAS-FAS, to discover the well-suited task-aware networks.
arXiv Detail & Related papers (2020-11-03T23:34:40Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.