Modern Hardware Security: A Review of Attacks and Countermeasures
- URL: http://arxiv.org/abs/2501.04394v1
- Date: Wed, 08 Jan 2025 10:14:19 GMT
- Title: Modern Hardware Security: A Review of Attacks and Countermeasures
- Authors: Jyotiprakash Mishra, Sanjay K. Sahay,
- Abstract summary: In this paper, we review the current state of vulnerabilities and mitigation strategies in contemporary computing systems.
We discuss cache side-channel attacks (including Spectre and Meltdown), power side-channel attacks (such as Simple Power Analysis), and advanced techniques like Voltage Glitching and Electromagnetic Analysis.
The paper concludes with an analysis of the RISC-V architecture's unique security challenges.
- Score: 1.7265013728931
- License:
- Abstract: With the exponential rise in the use of cloud services, smart devices, and IoT devices, advanced cyber attacks have become increasingly sophisticated and ubiquitous. Furthermore, the rapid evolution of computing architectures and memory technologies has created an urgent need to understand and address hardware security vulnerabilities. In this paper, we review the current state of vulnerabilities and mitigation strategies in contemporary computing systems. We discuss cache side-channel attacks (including Spectre and Meltdown), power side-channel attacks (such as Simple Power Analysis, Differential Power Analysis, Correlation Power Analysis, and Template Attacks), and advanced techniques like Voltage Glitching and Electromagnetic Analysis to help understand and build robust cybersecurity defense systems and guide further research. We also examine memory encryption, focusing on confidentiality, granularity, key management, masking, and re-keying strategies. Additionally, we cover Cryptographic Instruction Set Architectures, Secure Boot, Root of Trust mechanisms, Physical Unclonable Functions, and hardware fault injection techniques. The paper concludes with an analysis of the RISC-V architecture's unique security challenges. The comprehensive analysis presented in this paper is essential for building resilient hardware security solutions that can protect against both current and emerging threats in an increasingly challenging security landscape.
Related papers
- Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies [0.0]
The cybersecurity threat landscape is constantly actively making it imperative to develop sound frameworks to protect the IT structures.
This paper aims to discuss the application of cybersecurity frameworks into the IT security with focus placed on the role of such frameworks in addressing the changing nature of cybersecurity threats.
The discussion also singles out such technologies as Artificial Intelligence (AI) and Machine Learning (ML) as the core for real-time threat detection and response mechanisms.
arXiv Detail & Related papers (2025-02-02T03:38:48Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - HW-V2W-Map: Hardware Vulnerability to Weakness Mapping Framework for
Root Cause Analysis with GPT-assisted Mitigation Suggestion [3.847218857469107]
We presentHW-V2W-Map Framework, which is a Machine Learning (ML) framework focusing on hardware vulnerabilities and Internet of Things (IoT) security.
The architecture that we have proposed incorporates an Ontology-driven Storytelling framework, which automates the process of updating the Ontology.
Our proposed framework utilized Generative Pre-trained Transformer (GPT) Large Language Models (LLMs) to provide mitigation suggestions.
arXiv Detail & Related papers (2023-12-21T02:14:41Z) - Physical Adversarial Attacks for Surveillance: A Survey [40.81031907691243]
This paper reviews recent attempts and findings in learning and designing physical adversarial attacks for surveillance applications.
In particular, we propose a framework to analyze physical adversarial attacks and provide a comprehensive survey of physical adversarial attacks on four key surveillance tasks.
The insights in this paper present an important step in building resilience within surveillance systems to physical adversarial attacks.
arXiv Detail & Related papers (2023-05-01T20:19:59Z) - ANALYSE -- Learning to Attack Cyber-Physical Energy Systems With
Intelligent Agents [0.0]
ANALYSE is a machine-learning-based software suite to let learning agents autonomously find attacks in cyber-physical energy systems.
It is designed to find yet unknown attack types and to reproduce many known attack strategies in cyber-physical energy systems from the scientific literature.
arXiv Detail & Related papers (2023-04-21T11:36:18Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
Cyber resilience provides a new security paradigm that complements inadequate protection with resilience mechanisms.
A Cyber-Resilient Mechanism ( CRM) adapts to the known or zero-day threats and uncertainties in real-time.
We review the literature on RL for cyber resiliency and discuss the cyber-resilient defenses against three major types of vulnerabilities.
arXiv Detail & Related papers (2021-07-02T01:08:45Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.