論文の概要: A Domain Adaptation Model for Carotid Ultrasound: Image Harmonization, Noise Reduction, and Impact on Cardiovascular Risk Markers
- arxiv url: http://arxiv.org/abs/2407.05163v1
- Date: Sat, 6 Jul 2024 19:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:58:28.695557
- Title: A Domain Adaptation Model for Carotid Ultrasound: Image Harmonization, Noise Reduction, and Impact on Cardiovascular Risk Markers
- Title(参考訳): 頸動脈超音波の領域適応モデル:画像高調波化,ノイズ低減,および循環器危険マーカーへの影響
- Authors: Mohd Usama, Emma Nyman, Ulf Naslund, Christer Gronlund,
- Abstract要約: 超音波画像における画像から画像への変換のためのGANに基づくモデルを提案する。
耳下腺超音波画像のテクスチャパターンとノイズの低減について解剖学的に検討した。
その結果、ドメイン適応は両方のタスクで達成された。
- 参考スコア(独自算出の注目度): 0.09999629695552192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has been used extensively for medical image analysis applications, assuming the training and test data adhere to the same probability distributions. However, a common challenge arises when dealing with medical images generated by different systems or even the same system with varying parameter settings. Such images often contain diverse textures and noise patterns, violating the assumption. Consequently, models trained on data from one machine or setting usually struggle to perform effectively on data from another. To address this issue in ultrasound images, we proposed a Generative Adversarial Network (GAN) based model in this paper. We formulated image harmonization and denoising tasks as an image-to-image translation task, wherein we modified the texture pattern and reduced noise in Carotid ultrasound images while keeping the image content (the anatomy) unchanged. The performance was evaluated using feature distribution and pixel-space similarity metrics. In addition, blood-to-tissue contrast and influence on computed risk markers (Gray scale median, GSM) were evaluated. The results showed that domain adaptation was achieved in both tasks (histogram correlation 0.920 and 0.844), as compared to no adaptation (0.890 and 0.707), and that the anatomy of the images was retained (structure similarity index measure of the arterial wall 0.71 and 0.80). In addition, the image noise level (contrast) did not change in the image harmonization task (-34.1 vs 35.2 dB) but was improved in the noise reduction task (-23.5 vs -46.7 dB). The model outperformed the CycleGAN in both tasks. Finally, the risk marker GSM increased by 7.6 (p<0.001) in task 1 but not in task 2. We conclude that domain translation models are powerful tools for ultrasound image improvement while retaining the underlying anatomy but that downstream calculations of risk markers may be affected.
- Abstract(参考訳): 深層学習は、トレーニングとテストデータが同じ確率分布に従うことを前提として、医用画像解析の応用に広く用いられている。
しかし、異なるシステムで生成された医療画像や、異なるパラメータ設定で同じシステムでも、共通の課題が生じる。
このような画像には様々なテクスチャやノイズパターンが含まれており、仮定に違反していることが多い。
その結果、あるマシンからのデータでトレーニングされたモデルや設定は、通常、別のマシンからのデータで効果的に実行するのに苦労する。
超音波画像におけるこの問題に対処するため,我々はGANに基づくモデルを提案する。
画像間の変換タスクとして画像調和・復調タスクを定式化し,画像内容(解剖)を一定に保ちながら,頸動脈超音波像のテクスチャパターンを修正し,ノイズを低減した。
特徴分布と画素空間類似度測定値を用いて評価を行った。
また,血液と脂肪のコントラストと計算されたリスクマーカー(Gray scale median, GSM)への影響を評価した。
その結果, 画像の解剖学的特性は, 両課題(ヒストグラム相関0.920, 0.844) と非適応0.890, 0.707) で達成され, 血管壁0.71, 0.80の構造類似度指標) が維持された。
さらに、画像の雑音レベル(コントラスト)は、画像の調和タスク(-34.1 vs 35.2 dB)では変化せず、ノイズ低減タスク(23.5 vs -46.7 dB)では改善された。
このモデルは両方のタスクでCycleGANを上回った。
最後に、リスクマーカーGSMはタスク1では7.6(p<0.001)増加したが、タスク2では増加しなかった。
ドメイン翻訳モデルは、基礎となる解剖を保ちながら超音波画像改善のための強力なツールであるが、リスクマーカーの下流での計算に影響を及ぼす可能性があると結論付けている。
関連論文リスト
- Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
高フレームレート超音波イメージングは、高フレームレートイメージングを可能にする最先端技術である。
高フレームレート超音波イメージングにかかわる課題の1つは、それらにかかわる高ノイズが、より広範に採用を妨げていることである。
提案手法は,平面波画像の画質向上を目的としている。
具体的には、低角と高角複合平面波の区別をノイズとみなす。
さらに,本手法では,生成した画像の強度マップとして自然画像分割マスクを用い,解剖学的形状の精度向上を図る。
論文 参考訳(メタデータ) (2024-08-20T16:31:31Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Retinal Image Restoration using Transformer and Cycle-Consistent
Generative Adversarial Network [0.7868449549351486]
医療画像は様々な疾患の検出と治療に重要な役割を果たしている。
視覚変換器と畳み込みニューラルネットワークを用いた網膜画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-03-03T14:10:47Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
本研究では,この2値情報「ノイズの存在」を画像分類タスクに組み込んで予測精度を向上させる。
因果的変動推定から動機付け,雑音画像分類のための頑健な特徴表現を潜在生成モデルを用いて推定するトランスフォーマーに基づくアーキテクチャを提案する。
また、パフォーマンスベンチマークのための幅広いノイズ要素を取り入れた、新しいノイズの多い画像データセットも作成する。
論文 参考訳(メタデータ) (2022-03-29T13:07:53Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Image translation of Ultrasound to Pseudo Anatomical Display Using
Artificial Intelligence [0.0]
CycleGANは、各ドメインプロパティを個別に学習し、クロスドメインサイクルの一貫性を強制するために使用された。
生成された擬似解剖画像は、より明確な境界定義と明瞭なコントラストで、病変の視覚的識別を改善する。
論文 参考訳(メタデータ) (2022-02-16T13:31:49Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation [8.920717493647121]
人間の知覚のジャスト通知差(JND)の概念に触発された機械知覚の尺度を紹介します。
本稿では,機械学習モデルが偽ラベルを出力することで画像の変化を検出するまで,画像を付加雑音で反復的に歪曲する逆画像生成アルゴリズムを提案する。
CIFAR10、ImageNet、MS COCOデータセット上で、アルゴリズムが生成する対向画像の定性的および定量的評価を行います。
論文 参考訳(メタデータ) (2021-02-16T11:01:55Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。