Instructors as Innovators: A future-focused approach to new AI learning opportunities, with prompts
- URL: http://arxiv.org/abs/2407.05181v1
- Date: Tue, 23 Apr 2024 04:01:38 GMT
- Title: Instructors as Innovators: A future-focused approach to new AI learning opportunities, with prompts
- Authors: Ethan Mollick, Lilach Mollick,
- Abstract summary: This paper explores how instructors can leverage generative AI to create personalized learning experiences for students.
We present a range of AI-based exercises that enable novel forms of practice and application including simulations, mentoring, coaching, and co-creation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores how instructors can leverage generative AI to create personalized learning experiences for students that transform teaching and learning. We present a range of AI-based exercises that enable novel forms of practice and application including simulations, mentoring, coaching, and co-creation. For each type of exercise, we provide prompts that instructors can customize, along with guidance on classroom implementation, assessment, and risks to consider. We also provide blueprints, prompts that help instructors create their own original prompts. Instructors can leverage their content and pedagogical expertise to design these experiences, putting them in the role of builders and innovators. We argue that this instructor-driven approach has the potential to democratize the development of educational technology by enabling individual instructors to create AI exercises and tools tailored to their students' needs. While the exercises in this paper are a starting point, not a definitive solutions, they demonstrate AI's potential to expand what is possible in teaching and learning.
Related papers
- Collaborative Design of AI-Enhanced Learning Activities [0.0]
We develop a formative intervention that enables preservice teachers, in-service teachers, and EdTech specialists to effectively incorporate AI into their teaching practices.
Participants reflect on AI's potential in teaching and learning by exploring different activities that can integrate AI literacy in education, including its ethical considerations and potential for innovative pedagogy.
arXiv Detail & Related papers (2024-07-09T08:34:08Z) - Representational Alignment Supports Effective Machine Teaching [81.19197059407121]
We integrate insights from machine teaching and pragmatic communication with the literature on representational alignment.
We design a supervised learning environment that disentangles representational alignment from teacher accuracy.
arXiv Detail & Related papers (2024-06-06T17:48:24Z) - Towards Educator-Driven Tutor Authoring: Generative AI Approaches for Creating Intelligent Tutor Interfaces [0.31873871499564926]
We introduce generative AI capabilities to assist educators in creating tutor interfaces.
Our approach leverages Large Language Models (LLMs) and prompt engineering to generate tutor layout and contents.
A small-scale comparison shows the potential of our approach to enhance the efficiency of tutor interface design.
arXiv Detail & Related papers (2024-05-23T15:46:10Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
We investigate the experiences of seven teachers following their implementation of modules from the MIT RAICA curriculum.
Our analysis suggests that the AI modules expanded our teachers' knowledge in the field.
Our teachers advocated their need for better external support when navigating technological resources.
arXiv Detail & Related papers (2023-12-08T05:36:16Z) - Anticipating User Needs: Insights from Design Fiction on Conversational Agents for Computational Thinking [10.363782876965221]
We envision a conversational agent that guides students stepwise through exercises, tuning its method of guidance with an awareness of the educational background, skills and deficits, and learning preferences.
The insights obtained in this paper can guide future implementations of tutoring agents oriented toward teaching computational thinking and computer programming.
arXiv Detail & Related papers (2023-11-12T16:19:03Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
We propose a new supervision paradigm for interactive learning based on "teachable" decision-making systems that learn from structured advice provided by an external teacher.
We show that agents that learn from advice can acquire new skills with significantly less human supervision than standard reinforcement learning algorithms.
arXiv Detail & Related papers (2022-03-19T03:22:57Z) - An Experience Report of Executive-Level Artificial Intelligence
Education in the United Arab Emirates [53.04281982845422]
We present an experience report of teaching an AI course to business executives in the United Arab Emirates (UAE)
Rather than focusing only on theoretical and technical aspects, we developed a course that teaches AI with a view to enabling students to understand how to incorporate it into existing business processes.
arXiv Detail & Related papers (2022-02-02T20:59:53Z) - Towards Understanding the Impact of Real-Time AI-Powered Educational
Dashboards (RAED) on Providing Guidance to Instructors [0.0]
Real-Time AI-Powered Educational Dashboard (RAED) is a decision support tool for instructors.
Current developments in AI can be combined with the educational dashboards to make them AI-Powered.
arXiv Detail & Related papers (2021-07-30T03:22:41Z) - Interaction-limited Inverse Reinforcement Learning [50.201765937436654]
We present two different training strategies: Curriculum Inverse Reinforcement Learning (CIRL) covering the teacher's perspective, and Self-Paced Inverse Reinforcement Learning (SPIRL) focusing on the learner's perspective.
Using experiments in simulations and experiments with a real robot learning a task from a human demonstrator, we show that our training strategies can allow a faster training than a random teacher for CIRL and than a batch learner for SPIRL.
arXiv Detail & Related papers (2020-07-01T12:31:52Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.