Representational Alignment Supports Effective Machine Teaching
- URL: http://arxiv.org/abs/2406.04302v1
- Date: Thu, 6 Jun 2024 17:48:24 GMT
- Title: Representational Alignment Supports Effective Machine Teaching
- Authors: Ilia Sucholutsky, Katherine M. Collins, Maya Malaviya, Nori Jacoby, Weiyang Liu, Theodore R. Sumers, Michalis Korakakis, Umang Bhatt, Mark Ho, Joshua B. Tenenbaum, Brad Love, Zachary A. Pardos, Adrian Weller, Thomas L. Griffiths,
- Abstract summary: We integrate insights from machine teaching and pragmatic communication with the literature on representational alignment.
We design a supervised learning environment that disentangles representational alignment from teacher accuracy.
- Score: 81.19197059407121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A good teacher should not only be knowledgeable; but should be able to communicate in a way that the student understands -- to share the student's representation of the world. In this work, we integrate insights from machine teaching and pragmatic communication with the burgeoning literature on representational alignment to characterize a utility curve defining a relationship between representational alignment and teacher capability for promoting student learning. To explore the characteristics of this utility curve, we design a supervised learning environment that disentangles representational alignment from teacher accuracy. We conduct extensive computational experiments with machines teaching machines, complemented by a series of experiments in which machines teach humans. Drawing on our findings that improved representational alignment with a student improves student learning outcomes (i.e., task accuracy), we design a classroom matching procedure that assigns students to teachers based on the utility curve. If we are to design effective machine teachers, it is not enough to build teachers that are accurate -- we want teachers that can align, representationally, to their students too.
Related papers
- Can Language Models Teach Weaker Agents? Teacher Explanations Improve
Students via Personalization [84.86241161706911]
We show that teacher LLMs can indeed intervene on student reasoning to improve their performance.
We also demonstrate that in multi-turn interactions, teacher explanations generalize and learn from explained data.
We verify that misaligned teachers can lower student performance to random chance by intentionally misleading them.
arXiv Detail & Related papers (2023-06-15T17:27:20Z) - Supervision Complexity and its Role in Knowledge Distillation [65.07910515406209]
We study the generalization behavior of a distilled student.
The framework highlights a delicate interplay among the teacher's accuracy, the student's margin with respect to the teacher predictions, and the complexity of the teacher predictions.
We demonstrate efficacy of online distillation and validate the theoretical findings on a range of image classification benchmarks and model architectures.
arXiv Detail & Related papers (2023-01-28T16:34:47Z) - Computationally Identifying Funneling and Focusing Questions in
Classroom Discourse [24.279653100481863]
We propose the task of computationally detecting funneling and focusing questions in classroom discourse.
We release an annotated dataset of 2,348 teacher utterances labeled for funneling and focusing questions, or neither.
Our best model, a supervised RoBERTa model fine-tuned on our dataset, has a strong linear correlation of.76 with human expert labels and with positive educational outcomes.
arXiv Detail & Related papers (2022-07-08T01:28:29Z) - Know Thy Student: Interactive Learning with Gaussian Processes [11.641731210416102]
Our work proposes a simple diagnosis algorithm which uses Gaussian processes for inferring student-related information, before constructing a teaching dataset.
We study this in the offline reinforcement learning setting where the teacher must provide demonstrations to the student and avoid sending redundant trajectories.
Our experiments highlight the importance of diagosing before teaching and demonstrate how students can learn more efficiently with the help of an interactive teacher.
arXiv Detail & Related papers (2022-04-26T04:43:57Z) - Iterative Teacher-Aware Learning [136.05341445369265]
In human pedagogy, teachers and students can interact adaptively to maximize communication efficiency.
We propose a gradient optimization based teacher-aware learner who can incorporate teacher's cooperative intention into the likelihood function.
arXiv Detail & Related papers (2021-10-01T00:27:47Z) - Representation Consolidation for Training Expert Students [54.90754502493968]
We show that a multi-head, multi-task distillation method is sufficient to consolidate representations from task-specific teacher(s) and improve downstream performance.
Our method can also combine the representational knowledge of multiple teachers trained on one or multiple domains into a single model.
arXiv Detail & Related papers (2021-07-16T17:58:18Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
arXiv Detail & Related papers (2021-05-28T12:59:37Z) - Interactive Knowledge Distillation [79.12866404907506]
We propose an InterActive Knowledge Distillation scheme to leverage the interactive teaching strategy for efficient knowledge distillation.
In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation.
Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods.
arXiv Detail & Related papers (2020-07-03T03:22:04Z) - Understanding the Power and Limitations of Teaching with Imperfect
Knowledge [30.588367257209388]
We study the interaction between a teacher and a student/learner where the teacher selects training examples for the learner to learn a specific task.
Inspired by real-world applications of machine teaching in education, we consider the setting where teacher's knowledge is limited and noisy.
We show connections to how imperfect knowledge affects the teacher's solution of the corresponding machine teaching problem when constructing optimal teaching sets.
arXiv Detail & Related papers (2020-03-21T17:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.