論文の概要: Ensemble Boost: Greedy Selection for Superior Recommender Systems
- arxiv url: http://arxiv.org/abs/2407.05221v1
- Date: Sun, 07 Jul 2024 00:50:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 20:16:00.063530
- Title: Ensemble Boost: Greedy Selection for Superior Recommender Systems
- Title(参考訳): Ensemble Boost: スーパーレコメンダシステムのためのGreedy Selection
- Authors: Zainil Mehta, Tobias Vente,
- Abstract要約: 本研究は,レコメンデーション品質向上のためのアンサンブル技術の適用について検討する。
そこで本研究では,10種類の推薦モデルからトップkレコメンデーションを組み合わせる新しい手法を提案する。
提案手法の有効性を評価するために,5つの異なるデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Ensemble techniques have demonstrated remarkable success in improving predictive performance across various domains by aggregating predictions from multiple models [1]. In the realm of recommender systems, this research explores the application of ensemble technique to enhance recommendation quality. Specifically, we propose a novel approach to combine top-k recommendations from ten diverse recommendation models resulting in superior top-n recommendations using this novel ensemble technique. Our method leverages a Greedy Ensemble Selection(GES) strategy, effectively harnessing the collective intelligence of multiple models. We conduct experiments on five distinct datasets to evaluate the effectiveness of our approach. Evaluation across five folds using the NDCG metric reveals significant improvements in recommendation accuracy across all datasets compared to single best performing model. Furthermore, comprehensive comparisons against existing models underscore the efficacy of our ensemble approach in enhancing recommendation quality. Our ensemble approach yielded an average improvement of 21.67% across different NDCG@N metrics and the five datasets, compared to single best model. The popularity recommendation model serves as the baseline for comparison. This research contributes to the advancement of ensemble-based recommender systems, offering insights into the potential of combining diverse recommendation strategies to enhance user experience and satisfaction. By presenting a novel approach and demonstrating its superiority over existing methods, we aim to inspire further exploration and innovation in this domain.
- Abstract(参考訳): アンサンブル技術は、複数のモデルから予測を集約することで、様々な領域にわたる予測性能を改善することに顕著な成功を収めた[1]。
本研究は,レコメンデーションシステムの観点から,レコメンデーション品質を高めるためのアンサンブル技術の適用について検討する。
具体的には,10種類のレコメンデーションモデルから上位10のレコメンデーションを組み合わせ,新しいアンサンブル手法を用いて上位10のレコメンデーションを合成する手法を提案する。
本手法は,複数のモデルの集合的知性を効果的に活用し,Greedy Ensemble Selection(GES)戦略を活用する。
提案手法の有効性を評価するために,5つの異なるデータセットの実験を行った。
NDCG測定値を用いた5つの折り畳み評価では、単一の最高のパフォーマンスモデルと比較して、すべてのデータセットにおける推奨精度が大幅に向上した。
さらに,既存モデルとの総合的な比較は,推薦品質を高めるためのアンサンブルアプローチの有効性を裏付けるものである。
我々のアンサンブルアプローチは、NDCG@Nメトリクスと5つのデータセットで平均21.67%改善した。
人気推薦モデルは、比較の基準となる。
本研究は,アンサンブルに基づくレコメンデーションシステムの進歩に寄与し,ユーザエクスペリエンスと満足度を高めるために,多様なレコメンデーション戦略を組み合わせる可能性についての洞察を提供する。
新たなアプローチを示し、既存の手法よりも優位性を示すことで、我々はこの領域におけるさらなる探索と革新を刺激することを目指している。
関連論文リスト
- Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method [60.364834418531366]
RRSの性能を包括的かつ正確に評価する5つの新しい評価指標を提案する。
因果的観点からRSを定式化し、二元的介入として勧告を定式化する。
提案手法では,結果の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T07:21:02Z) - Evaluating Ensemble Methods for News Recommender Systems [50.90330146667386]
本稿では,Microsoft News データセット (MIND) において,様々な最先端アルゴリズムを組み合わさって優れた結果を得るために,アンサンブル手法をどのように利用できるかを示す。
その結果,NRSアルゴリズムの組み合わせは,基礎学習者が十分に多様であることから,個々のアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-06-23T13:40:50Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - A Recommendation Approach based on Similarity-Popularity Models of
Complex Networks [1.385805101975528]
そこで本研究では,類似性傾向モデルにより生成された複雑なネットワークをベースとした新しい推薦手法を提案する。
まず、観測されたレーティングからユーザとアイテムをノードとして持つネットワークモデルを構築し、そのモデルを用いて未知のレーティングを予測する。
提案手法は, 各種ドメインの21データセットに対して, ベースラインと最先端のレコメンデーション手法に対して, 提案手法を実装, 実験的に比較した。
論文 参考訳(メタデータ) (2022-09-29T11:00:06Z) - GHRS: Graph-based Hybrid Recommendation System with Application to Movie
Recommendation [0.0]
本稿では,ユーザのレーティングの類似性に関連するグラフベースモデルを用いたレコメンデータシステムを提案する。
オートエンコーダの特徴抽出の利点を生かして,全ての属性を組み合わせて新しい特徴を抽出する。
The experimental results on the MovieLens dataset shows that the proposed algorithm developed many existing recommendation algorithm on recommendation accuracy。
論文 参考訳(メタデータ) (2021-11-06T10:47:45Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
本稿では,Recommender Systems (RS) 設定のための拡張多目的強化学習(SMORL)を紹介する。
SMORLエージェントは、標準レコメンデーションモデルを拡張し、RLレイヤーを追加し、3つの主要な目的(正確性、多様性、新しいレコメンデーション)を同時に満たすように強制する。
実世界の2つのデータセットに対する実験結果から,集約的多様性の顕著な増加,精度の適度な向上,レコメンデーションの反復性の低下,および相補的目的としての多様性と新規性の強化の重要性が示された。
論文 参考訳(メタデータ) (2021-10-28T13:22:45Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
本稿では,アクタ・クリティカルアーキテクチャを用いた深層強化学習に基づく推薦システムを提案する。
提案モデルでは,ユーザの嗜好に基づいて,多様かつ関連性の高いレコメンデーションリストを生成することができる。
論文 参考訳(メタデータ) (2021-10-28T13:11:29Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Hybrid Model with Time Modeling for Sequential Recommender Systems [0.15229257192293202]
Booking.comはWSDM WebTour 2021 Challengeを組織した。
レコメンダシステムのための最先端のディープラーニングアーキテクチャをテストするために,いくつかの実験を行った。
実験結果から,narmの改善は他のベンチマーク手法よりも優れていた。
論文 参考訳(メタデータ) (2021-03-07T19:28:22Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
本稿では,シーケンスレコメンデーションのための自己改善学習のためのモデルS3-Recを提案する。
そこで本稿では,属性,項目,サブシーケンス,シーケンス間の相関関係を学習するために,4つの補助的自己教師対象を考案する。
6つの実世界のデータセットで実施された大規模な実験は、既存の最先端手法よりも提案手法が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T11:44:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。