論文の概要: HyperKAN: Kolmogorov-Arnold Networks make Hyperspectral Image Classificators Smarter
- arxiv url: http://arxiv.org/abs/2407.05278v3
- Date: Fri, 6 Sep 2024 05:56:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 18:20:31.100102
- Title: HyperKAN: Kolmogorov-Arnold Networks make Hyperspectral Image Classificators Smarter
- Title(参考訳): HyperKAN: Kolmogorov-Arnold NetworksがHyperspectral Image Classificatorsを賢く
- Authors: Valeriy Lobanov, Nikita Firsov, Evgeny Myasnikov, Roman Khabibullin, Artem Nikonorov,
- Abstract要約: 本稿では,従来のネットワークの線形層と畳み込み層をKANベースのネットワークに置き換えることを提案する。
これらの修正により,高スペクトルリモートセンシング画像の画素単位の分類精度が大幅に向上した。
最も大きな効果は、スペクトルデータのみを扱う畳み込みネットワークにおいて達成された。
- 参考スコア(独自算出の注目度): 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In traditional neural network architectures, a multilayer perceptron (MLP) is typically employed as a classification block following the feature extraction stage. However, the Kolmogorov-Arnold Network (KAN) presents a promising alternative to MLP, offering the potential to enhance prediction accuracy. In this paper, we propose the replacement of linear and convolutional layers of traditional networks with KAN-based counterparts. These modifications allowed us to significantly increase the per-pixel classification accuracy for hyperspectral remote-sensing images. We modified seven different neural network architectures for hyperspectral image classification and observed a substantial improvement in the classification accuracy across all the networks. The architectures considered in the paper include baseline MLP, state-of-the-art 1D (1DCNN) and 3D convolutional (two different 3DCNN, NM3DCNN), and transformer (SSFTT) architectures, as well as newly proposed M1DCNN. The greatest effect was achieved for convolutional networks working exclusively on spectral data, and the best classification quality was achieved using a KAN-based transformer architecture. All the experiments were conducted using seven openly available hyperspectral datasets. Our code is available at https://github.com/f-neumann77/HyperKAN.
- Abstract(参考訳): 従来のニューラルネットワークアーキテクチャでは、多層パーセプトロン(MLP)が特徴抽出段階に続く分類ブロックとして使用されるのが一般的である。
しかし、コルモゴロフ・アルノルドネットワーク(KAN)は、予測精度を高める可能性を秘め、MLPに代わる有望な選択肢を提示している。
本稿では,従来のネットワークの線形層と畳み込み層をKANベースの層に置き換える手法を提案する。
これらの修正により,高スペクトルリモートセンシング画像の画素単位の分類精度が大幅に向上した。
我々は、ハイパースペクトル画像分類のための7つの異なるニューラルネットワークアーキテクチャを修正し、全ネットワークにわたる分類精度を大幅に改善した。
論文で検討されたアーキテクチャには、ベースラインMLP、最先端1D (1DCNN) と3D畳み込み (2つの異なる3DCNN、NM3DCNN)、トランスフォーマー (SSFTT) アーキテクチャ、新たに提案されたM1DCNNが含まれる。
最も大きな効果は、スペクトルデータのみを扱う畳み込みネットワークにおいて達成され、最も優れた分類品質はKanoベースのトランスフォーマーアーキテクチャを用いて達成された。
実験はすべて、公開されている7つのハイパースペクトルデータセットを用いて行われた。
私たちのコードはhttps://github.com/f-neumann77/HyperKANで利用可能です。
関連論文リスト
- How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification [26.37105279142761]
Kolmogorov-Arnold Networks (KANs) は視覚変換器 (ViTs) の代替として提案された。
本研究では,複雑なハイパースペクトル画像(HSI)データ分類におけるkansの有効性を評価する。
そこで我々は,1D,2D,3Dkanを用いたハイブリッドアーキテクチャを開発し,提案する。
論文 参考訳(メタデータ) (2024-06-22T03:31:02Z) - CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
現在の畳み込みニューラルネットワーク(CNN)は、ハイパースペクトルデータの局所的な特徴に焦点を当てている。
Transformerフレームワークは、ハイパースペクトル画像からグローバルな特徴を抽出する。
本研究は、CMTNet(Convolutional Meet Transformer Network)を紹介する。
論文 参考訳(メタデータ) (2024-06-20T07:56:51Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - An Efficient End-to-End 3D Model Reconstruction based on Neural
Architecture Search [5.913946292597174]
ニューラルアーキテクチャサーチ(NAS)とバイナリ分類を用いた効率的なモデル再構成手法を提案する。
本手法は,より少ないネットワークパラメータを用いて,再構成精度を著しく向上する。
論文 参考訳(メタデータ) (2022-02-27T08:53:43Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
我々は,網膜卵管刺激によるガウスフィルタとランク順符号化の差異を取り入れたスポーキング畳み込みニューラルネットワーク(SCNN)を提示した。
このモデルは、Nengoライブラリーで実装されているように、スパイキングニューロンで動作するように適応されたバックプロパゲーションアルゴリズムの変種を用いて訓練される。
ネットワークは最大90%の精度で達成され、損失はクロスエントロピー関数を用いて計算される。
論文 参考訳(メタデータ) (2021-05-29T15:28:30Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - Spherical Transformer: Adapting Spherical Signal to CNNs [53.18482213611481]
Spherical Transformerは、球状信号を標準CNNで直接処理できるベクトルに変換できます。
我々は,球面MNIST認識,3次元オブジェクト分類,全方向画像セマンティックセグメンテーションの課題に対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-01-11T12:33:16Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。