Mjolnir: Breaking the Shield of Perturbation-Protected Gradients via Adaptive Diffusion
- URL: http://arxiv.org/abs/2407.05285v3
- Date: Wed, 11 Dec 2024 09:05:22 GMT
- Title: Mjolnir: Breaking the Shield of Perturbation-Protected Gradients via Adaptive Diffusion
- Authors: Xuan Liu, Siqi Cai, Qihua Zhou, Song Guo, Ruibin Li, Kaiwei Lin,
- Abstract summary: We present the first attempt to break the shield of gradient perturbation protection in Federated Learning.<n>We introduce Mjolnir, a perturbation-resilient gradient leakage attack.<n>Mjolnir is capable of removing perturbations from gradients without requiring additional access to the original model structure or external data.
- Score: 13.764770382623812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perturbation-based mechanisms, such as differential privacy, mitigate gradient leakage attacks by introducing noise into the gradients, thereby preventing attackers from reconstructing clients' private data from the leaked gradients. However, can gradient perturbation protection mechanisms truly defend against all gradient leakage attacks? In this paper, we present the first attempt to break the shield of gradient perturbation protection in Federated Learning for the extraction of private information. We focus on common noise distributions, specifically Gaussian and Laplace, and apply our approach to DNN and CNN models. We introduce Mjolnir, a perturbation-resilient gradient leakage attack that is capable of removing perturbations from gradients without requiring additional access to the original model structure or external data. Specifically, we leverage the inherent diffusion properties of gradient perturbation protection to develop a novel diffusion-based gradient denoising model for Mjolnir. By constructing a surrogate client model that captures the structure of perturbed gradients, we obtain crucial gradient data for training the diffusion model. We further utilize the insight that monitoring disturbance levels during the reverse diffusion process can enhance gradient denoising capabilities, allowing Mjolnir to generate gradients that closely approximate the original, unperturbed versions through adaptive sampling steps. Extensive experiments demonstrate that Mjolnir effectively recovers the protected gradients and exposes the Federated Learning process to the threat of gradient leakage, achieving superior performance in gradient denoising and private data recovery.
Related papers
- One-for-More: Continual Diffusion Model for Anomaly Detection [61.12622458367425]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.
Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''
We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling [63.07948989346385]
Federated learning collaboratively trains a neural network on a global server.
Each local client receives the current global model weights and sends back parameter updates (gradients) based on its local private data.
Existing gradient inversion attacks can exploit this vulnerability to recover private training instances from a client's gradient vectors.
We present a novel defense tailored for large neural network models.
arXiv Detail & Related papers (2025-01-27T01:06:23Z) - Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
We propose Diffusion State-Guided Projected Gradient (DiffStateGrad) for inverse problems.
DiffStateGrad projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process.
We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise.
arXiv Detail & Related papers (2024-10-04T14:26:54Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - A Theoretical Insight into Attack and Defense of Gradient Leakage in
Transformer [11.770915202449517]
The Deep Leakage from Gradient (DLG) attack has emerged as a prevalent and highly effective method for extracting sensitive training data by inspecting exchanged gradients.
This research presents a comprehensive analysis of the gradient leakage method when applied specifically to transformer-based models.
arXiv Detail & Related papers (2023-11-22T09:58:01Z) - Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning
and Autoregression [70.78523583702209]
We study training instabilities of behavior cloning with deep neural networks.
We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards.
arXiv Detail & Related papers (2023-10-17T17:39:40Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Privacy Preserving Federated Learning with Convolutional Variational
Bottlenecks [2.1301560294088318]
Recent work has proposed to prevent gradient leakage without loss of model utility by incorporating a PRivacy EnhanCing mODulE (PRECODE) based on variational modeling.
We show that variational modeling introducesity into gradients of PRECODE and the subsequent layers in a neural network.
We formulate an attack that disables the privacy preserving effect of PRECODE by purposefully omitting gradient gradients during attack optimization.
arXiv Detail & Related papers (2023-09-08T16:23:25Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning (FL) has emerged as a promising distributed machine learning framework to preserve clients' privacy.
Recent studies find that an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge.
We propose textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers.
arXiv Detail & Related papers (2023-08-09T04:34:21Z) - Sampling-based Fast Gradient Rescaling Method for Highly Transferable
Adversarial Attacks [18.05924632169541]
We propose a Sampling-based Fast Gradient Rescaling Method (S-FGRM)
Specifically, we use data rescaling to substitute the sign function without extra computational cost.
Our method could significantly boost the transferability of gradient-based attacks and outperform the state-of-the-art baselines.
arXiv Detail & Related papers (2023-07-06T07:52:42Z) - Securing Distributed SGD against Gradient Leakage Threats [13.979995939926154]
This paper presents a holistic approach to gradient leakage resilient distributed gradient Descent (SGD)
We analyze two types of strategies for privacy-enhanced federated learning: (i) gradient pruning with random selection or low-rank filtering and (ii) gradient perturbation with additive random noise or differential privacy noise.
We present a gradient leakage resilient approach to securing distributed SGD in federated learning, with differential privacy controlled noise as the tool.
arXiv Detail & Related papers (2023-05-10T21:39:27Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Combining Variational Modeling with Partial Gradient Perturbation to
Prevent Deep Gradient Leakage [0.6021787236982659]
gradient inversion attacks are an ubiquitous threat in collaborative learning of neural networks.
Recent work proposed a PRivacy EnhanCing mODulE (PRECODE) based on PPPal modeling as extension for arbitrary model architectures.
In this work, we investigate the effect of PRECODE on gradient inversion attacks to reveal its underlying working principle.
We show that our approach requires less gradient perturbation to effectively preserve privacy without harming model performance.
arXiv Detail & Related papers (2022-08-09T13:23:29Z) - Sampling-based Fast Gradient Rescaling Method for Highly Transferable
Adversarial Attacks [19.917677500613788]
gradient-based approaches generally use the $sign$ function to generate perturbations at the end of the process.
We propose a Sampling-based Fast Gradient Rescaling Method (S-FGRM) to improve the transferability of crafted adversarial examples.
arXiv Detail & Related papers (2022-04-06T15:12:20Z) - Auditing Privacy Defenses in Federated Learning via Generative Gradient
Leakage [9.83989883339971]
Federated Learning (FL) framework brings privacy benefits to distributed learning systems.
Recent studies have revealed that private information can still be leaked through shared information.
We propose a new type of leakage, i.e., Generative Gradient Leakage (GGL)
arXiv Detail & Related papers (2022-03-29T15:59:59Z) - Unbiased Risk Estimators Can Mislead: A Case Study of Learning with
Complementary Labels [92.98756432746482]
We study a weakly supervised problem called learning with complementary labels.
We show that the quality of gradient estimation matters more in risk minimization.
We propose a novel surrogate complementary loss(SCL) framework that trades zero bias with reduced variance.
arXiv Detail & Related papers (2020-07-05T04:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.