Active Adversarial Noise Suppression for Image Forgery Localization
- URL: http://arxiv.org/abs/2506.12871v1
- Date: Sun, 15 Jun 2025 14:53:27 GMT
- Title: Active Adversarial Noise Suppression for Image Forgery Localization
- Authors: Rongxuan Peng, Shunquan Tan, Xianbo Mo, Alex C. Kot, Jiwu Huang,
- Abstract summary: We introduce an Adversarial Noise Suppression Module (ANSM) that generate a defensive perturbation to suppress the attack effect of adversarial noise.<n>To our best knowledge, this is the first report of adversarial defense in image forgery localization tasks.
- Score: 56.98050814363447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning have significantly propelled the development of image forgery localization. However, existing models remain highly vulnerable to adversarial attacks: imperceptible noise added to forged images can severely mislead these models. In this paper, we address this challenge with an Adversarial Noise Suppression Module (ANSM) that generate a defensive perturbation to suppress the attack effect of adversarial noise. We observe that forgery-relevant features extracted from adversarial and original forged images exhibit distinct distributions. To bridge this gap, we introduce Forgery-relevant Features Alignment (FFA) as a first-stage training strategy, which reduces distributional discrepancies by minimizing the channel-wise Kullback-Leibler divergence between these features. To further refine the defensive perturbation, we design a second-stage training strategy, termed Mask-guided Refinement (MgR), which incorporates a dual-mask constraint. MgR ensures that the perturbation remains effective for both adversarial and original forged images, recovering forgery localization accuracy to their original level. Extensive experiments across various attack algorithms demonstrate that our method significantly restores the forgery localization model's performance on adversarial images. Notably, when ANSM is applied to original forged images, the performance remains nearly unaffected. To our best knowledge, this is the first report of adversarial defense in image forgery localization tasks. We have released the source code and anti-forensics dataset.
Related papers
- Adversarial-Guided Diffusion for Multimodal LLM Attacks [22.666853714543993]
We propose an adversarial-guided diffusion (AGD) approach for adversarial attack MLLMs.<n>AGD injects target semantics into the noise component of the reverse diffusion.<n>AGD outperforms state-of-the-art methods in attack performance as well as in model robustness to some defenses.
arXiv Detail & Related papers (2025-07-31T02:57:20Z) - Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification [75.09791002021947]
Existing purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples.<n>This approach is fundamentally flawed as the uniform operation of the forward process compromises normal pixels while attempting to combat adversarial perturbations.<n>We propose a heterogeneous purification strategy grounded in the interpretability of neural networks.<n>Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise.
arXiv Detail & Related papers (2025-03-03T11:00:25Z) - Anti-Reference: Universal and Immediate Defense Against Reference-Based Generation [24.381813317728195]
Anti-Reference is a novel method that protects images from the threats posed by reference-based generation techniques.<n>We propose a unified loss function that enables joint attacks on fine-tuning-based customization methods.<n>Our method shows certain transfer attack capabilities, effectively challenging both gray-box models and some commercial APIs.
arXiv Detail & Related papers (2024-12-08T16:04:45Z) - Rethinking and Defending Protective Perturbation in Personalized Diffusion Models [21.30373461975769]
We study the fine-tuning process of personalized diffusion models (PDMs) through the lens of shortcut learning.
PDMs are susceptible to minor adversarial perturbations, leading to significant degradation when fine-tuned on corrupted datasets.
We propose a systematic defense framework that includes data purification and contrastive decoupling learning.
arXiv Detail & Related papers (2024-06-27T07:14:14Z) - Disrupting Diffusion: Token-Level Attention Erasure Attack against Diffusion-based Customization [19.635385099376066]
malicious users have misused diffusion-based customization methods like DreamBooth to create fake images.
In this paper, we propose DisDiff, a novel adversarial attack method to disrupt the diffusion model outputs.
arXiv Detail & Related papers (2024-05-31T02:45:31Z) - Towards Robust Image Stitching: An Adaptive Resistance Learning against
Compatible Attacks [66.98297584796391]
Image stitching seamlessly integrates images captured from varying perspectives into a single wide field-of-view image.
Given a pair of captured images, subtle perturbations and distortions which go unnoticed by the human visual system tend to attack the correspondence matching.
This paper presents the first attempt to improve the robustness of image stitching against adversarial attacks.
arXiv Detail & Related papers (2024-02-25T02:36:33Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks [16.577595936609665]
We introduce a novel approach to counter adversarial attacks, namely, image resampling.
Image resampling transforms a discrete image into a new one, simulating the process of scene recapturing or rerendering as specified by a geometrical transformation.
We show that our method significantly enhances the adversarial robustness of diverse deep models against various attacks while maintaining high accuracy on clean images.
arXiv Detail & Related papers (2023-10-18T11:19:32Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp
Adversarial Attacks [154.31827097264264]
Adversarial training is a popular defense strategy against attack threat models with bounded Lp norms.
We propose Dual Manifold Adversarial Training (DMAT) where adversarial perturbations in both latent and image spaces are used in robustifying the model.
Our DMAT improves performance on normal images, and achieves comparable robustness to the standard adversarial training against Lp attacks.
arXiv Detail & Related papers (2020-09-05T06:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.