論文の概要: Vulnerability-Hunter: An Adaptive Feature Perception Attention Network for Smart Contract Vulnerabilities
- arxiv url: http://arxiv.org/abs/2407.05318v1
- Date: Sun, 7 Jul 2024 10:13:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:17:13.048076
- Title: Vulnerability-Hunter: An Adaptive Feature Perception Attention Network for Smart Contract Vulnerabilities
- Title(参考訳): Vulnerability-Hunter:スマートコントラクト脆弱性に対する適応型機能認識アテンションネットワーク
- Authors: Yizhou Chen,
- Abstract要約: スマートコントラクトコード全体を包括的にスキャンする動的重みを持つ特徴認識モジュールを備えた,新たな脆弱性検出モデルであるAFPNetを提案する。
脆弱性ラベル付き大規模データセットにおけるAFPNetの評価を行う。
- 参考スコア(独自算出の注目度): 4.487191851300675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart Contract Vulnerability Detection (SCVD) is crucial to guarantee the quality of blockchain-based systems. Graph neural networks have been shown to be effective in learning semantic representations of smart contract code and are commonly adopted by existing deep learning-based SCVD. However, the current methods still have limitations in their utilization of graph sampling or subgraph pooling based on predefined rules for extracting crucial components from structure graphs of smart contract code. These predefined rule-based strategies, typically designed using static rules or heuristics, demonstrate limited adaptability to dynamically adjust extraction strategies according to the structure and content of the graph in heterogeneous topologies of smart contract code. Consequently, these strategies may not possess universal applicability to all smart contracts, potentially leading to false positives or omissions. To address these problems, we propose AFPNet, a novel vulnerability detection model equipped with a feature perception module that has dynamic weights for comprehensive scanning of the entire smart contract code and automatic extraction of crucial code snippets (the $P$ snippets with the largest weights). Subsequently, the relationship perception attention module employs an attention mechanism to learn dependencies among these code snippets and detect smart contract vulnerabilities. The efforts made by AFPNet consistently enable the capture of crucial code snippets and enhance the performance of SCVD optimization. We conduct an evaluation of AFPNet in the several large-scale datasets with vulnerability labels. The experimental results show that our AFPNet significantly outperforms the state-of-the-art approach by 6.38\%-14.02\% in term of F1-score. The results demonstrate the effectiveness of AFPNet in dynamically extracting valuable information and vulnerability detection.
- Abstract(参考訳): ブロックチェーンベースのシステムの品質を保証するためには、スマートコントラクト脆弱性検出(SCVD)が不可欠だ。
グラフニューラルネットワークは、スマートコントラクトコードのセマンティック表現の学習に有効であることが示されており、既存のディープラーニングベースのSCVDで一般的に採用されている。
しかし、現在の手法では、スマートコントラクトコードの構造グラフから重要なコンポーネントを抽出するための事前定義されたルールに基づいて、グラフサンプリングやサブグラフプーリングの利用に制限がある。
これらの事前定義されたルールベースの戦略は、通常静的ルールやヒューリスティックを使って設計され、スマートコントラクトコードの異種トポロジにおけるグラフの構造と内容に応じて抽出戦略を動的に調整するための限定的な適応性を示す。
その結果、これらの戦略はすべてのスマートコントラクトに普遍的な適用性を持たず、偽陽性や省略につながる可能性がある。
これらの問題を解決するために,スマートコントラクト全体の包括的スキャンと重要なコードスニペットの自動抽出(最大重み付き$P$スニペット)のための動的重み付き特徴認識モジュールを備えた,新たな脆弱性検出モデルであるAFPNetを提案する。
その後、リレーション認識アテンションモジュールは、これらのコードスニペット間の依存関係を学習し、スマートコントラクトの脆弱性を検出するためのアテンションメカニズムを使用する。
AFPNetの取り組みにより、決定的なコードスニペットの取得とSCVD最適化の性能向上が一貫して実現された。
脆弱性ラベル付き大規模データセットにおけるAFPNetの評価を行う。
実験の結果,AFPNetはF1スコアの6.38\%-14.02\%で最先端のアプローチを著しく上回っていることがわかった。
その結果,AFPNetが有用情報を動的に抽出し,脆弱性検出に有効であることが示唆された。
関連論文リスト
- Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
本稿では,金融不正検出の分野において,革新的なGNN-CLモデルを提案する。
グラフニューラルネットワーク(gnn)、畳み込みニューラルネットワーク(cnn)、長期記憶(LSTM)の利点を組み合わせる。
本稿では,マルチ層パーセプトロン(MLPS)を用いてノードの類似性を推定する。
論文 参考訳(メタデータ) (2024-07-09T03:59:06Z) - P3GNN: A Privacy-Preserving Provenance Graph-Based Model for APT Detection in Software Defined Networking [25.181087776375914]
本稿では,グラフ畳み込みネットワーク(GCN)とフェデレーション学習(FL)を相乗化する新しいモデルであるP3GNNを提案する。
P3GNNは教師なし学習を利用して、プロファイランスグラフ内の運用パターンを分析し、セキュリティ違反を示す偏差を識別する。
P3GNNの主なイノベーションは、前兆グラフ内のノードレベルで異常を検出する機能、攻撃軌跡の詳細なビューの提供、セキュリティ解析の強化である。
論文 参考訳(メタデータ) (2024-06-17T18:14:03Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
本研究では,グラフ解析手法と改良型グラフ注意畳み込みニューラルネットワーク(GAT)モデルを提案する。
制御フローグラフを分析して、脆弱性の修正を目的とした依存性のアップグレードから発生するアプリケーションの変更をプロファイルします。
結果は、コード脆弱性のリレーショナルダイナミクスに関する微妙な洞察を提供する上で、強化されたGATモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-03-08T02:01:47Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - ReGVD: Revisiting Graph Neural Networks for Vulnerability Detection [20.65271290295621]
本稿では,脆弱性検出のためのグラフネットワークモデルReGVDを提案する。
特にReGVDは、あるソースコードをフラットなトークンのシーケンスと見なしている。
我々は、脆弱性検出のためのCodeXGLUEから、実世界のベンチマークデータセット上で最も高い精度を得る。
論文 参考訳(メタデータ) (2021-10-14T12:44:38Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
既存の契約のセキュリティ分析の取り組みは、労働集約的でスケーリング不能な専門家によって定義された厳格なルールに依存している。
本稿では,正規化グラフからグラフ特徴を抽出する新たな時間的メッセージ伝達ネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T13:16:30Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。