PICA: Physics-Integrated Clothed Avatar
- URL: http://arxiv.org/abs/2407.05324v1
- Date: Sun, 7 Jul 2024 10:23:21 GMT
- Title: PICA: Physics-Integrated Clothed Avatar
- Authors: Bo Peng, Yunfan Tao, Haoyu Zhan, Yudong Guo, Juyong Zhang,
- Abstract summary: We introduce PICA, a novel representation for high-fidelity animatable clothed human avatars with physics-accurate dynamics, even for loose clothing.
Our method achieves high-fidelity rendering of human bodies in complex and novel driving poses, significantly outperforming previous methods under the same settings.
- Score: 30.277983921620663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce PICA, a novel representation for high-fidelity animatable clothed human avatars with physics-accurate dynamics, even for loose clothing. Previous neural rendering-based representations of animatable clothed humans typically employ a single model to represent both the clothing and the underlying body. While efficient, these approaches often fail to accurately represent complex garment dynamics, leading to incorrect deformations and noticeable rendering artifacts, especially for sliding or loose garments. Furthermore, previous works represent garment dynamics as pose-dependent deformations and facilitate novel pose animations in a data-driven manner. This often results in outcomes that do not faithfully represent the mechanics of motion and are prone to generating artifacts in out-of-distribution poses. To address these issues, we adopt two individual 3D Gaussian Splatting (3DGS) models with different deformation characteristics, modeling the human body and clothing separately. This distinction allows for better handling of their respective motion characteristics. With this representation, we integrate a graph neural network (GNN)-based clothed body physics simulation module to ensure an accurate representation of clothing dynamics. Our method, through its carefully designed features, achieves high-fidelity rendering of clothed human bodies in complex and novel driving poses, significantly outperforming previous methods under the same settings.
Related papers
- Towards High-Quality 3D Motion Transfer with Realistic Apparel Animation [69.36162784152584]
We present a novel method aiming for high-quality motion transfer with realistic apparel animation.
We propose a data-driven pipeline that learns to disentangle body and apparel deformations via two neural deformation modules.
Our method produces results with superior quality for various types of apparel.
arXiv Detail & Related papers (2024-07-15T22:17:35Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
We introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos.
A pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts.
Our method is able to render natural garment dynamics that deviate highly from the body and well to generalize to both unseen views and poses.
arXiv Detail & Related papers (2024-01-27T08:48:18Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - CaPhy: Capturing Physical Properties for Animatable Human Avatars [44.95805736197971]
CaPhy is a novel method for reconstructing animatable human avatars with realistic dynamic properties for clothing.
We aim for capturing the geometric and physical properties of the clothing from real observations.
We combine unsupervised training with physics-based losses and 3D-supervised training using scanned data to reconstruct a dynamic model of clothing.
arXiv Detail & Related papers (2023-08-11T04:01:13Z) - PERGAMO: Personalized 3D Garments from Monocular Video [6.8338761008826445]
PERGAMO is a data-driven approach to learn a deformable model for 3D garments from monocular images.
We first introduce a novel method to reconstruct the 3D geometry of garments from a single image, and use it to build a dataset of clothing from monocular videos.
We show that our method is capable of producing garment animations that match the real-world behaviour, and generalizes to unseen body motions extracted from motion capture dataset.
arXiv Detail & Related papers (2022-10-26T21:15:54Z) - Dressing Avatars: Deep Photorealistic Appearance for Physically
Simulated Clothing [49.96406805006839]
We introduce pose-driven avatars with explicit modeling of clothing that exhibit both realistic clothing dynamics and photorealistic appearance learned from real-world data.
Our key contribution is a physically-inspired appearance network, capable of generating photorealistic appearance with view-dependent and dynamic shadowing effects even for unseen body-clothing configurations.
arXiv Detail & Related papers (2022-06-30T17:58:20Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Real-time Deep Dynamic Characters [95.5592405831368]
We propose a deep videorealistic 3D human character model displaying highly realistic shape, motion, and dynamic appearance.
We use a novel graph convolutional network architecture to enable motion-dependent deformation learning of body and clothing.
We show that our model creates motion-dependent surface deformations, physically plausible dynamic clothing deformations, as well as video-realistic surface textures at a much higher level of detail than previous state of the art approaches.
arXiv Detail & Related papers (2021-05-04T23:28:55Z) - Dynamic Neural Garments [45.833166320896716]
We present a solution that takes in body joint motion to directly produce realistic dynamic garment image sequences.
Specifically, given the target joint motion sequence of an avatar, we propose dynamic neural garments to jointly simulate and render plausible dynamic garment appearance.
arXiv Detail & Related papers (2021-02-23T17:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.