PERGAMO: Personalized 3D Garments from Monocular Video
- URL: http://arxiv.org/abs/2210.15040v1
- Date: Wed, 26 Oct 2022 21:15:54 GMT
- Title: PERGAMO: Personalized 3D Garments from Monocular Video
- Authors: Andr\'es Casado-Elvira and Marc Comino Trinidad and Dan Casas
- Abstract summary: PERGAMO is a data-driven approach to learn a deformable model for 3D garments from monocular images.
We first introduce a novel method to reconstruct the 3D geometry of garments from a single image, and use it to build a dataset of clothing from monocular videos.
We show that our method is capable of producing garment animations that match the real-world behaviour, and generalizes to unseen body motions extracted from motion capture dataset.
- Score: 6.8338761008826445
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Clothing plays a fundamental role in digital humans. Current approaches to
animate 3D garments are mostly based on realistic physics simulation, however,
they typically suffer from two main issues: high computational run-time cost,
which hinders their development; and simulation-to-real gap, which impedes the
synthesis of specific real-world cloth samples. To circumvent both issues we
propose PERGAMO, a data-driven approach to learn a deformable model for 3D
garments from monocular images. To this end, we first introduce a novel method
to reconstruct the 3D geometry of garments from a single image, and use it to
build a dataset of clothing from monocular videos. We use these 3D
reconstructions to train a regression model that accurately predicts how the
garment deforms as a function of the underlying body pose. We show that our
method is capable of producing garment animations that match the real-world
behaviour, and generalizes to unseen body motions extracted from motion capture
dataset.
Related papers
- DressRecon: Freeform 4D Human Reconstruction from Monocular Video [64.61230035671885]
We present a method to reconstruct time-consistent human body models from monocular videos.
We focus on extremely loose clothing or handheld object interactions.
DressRecon yields higher-fidelity 3D reconstructions than prior art.
arXiv Detail & Related papers (2024-09-30T17:59:15Z) - PICA: Physics-Integrated Clothed Avatar [30.277983921620663]
We introduce PICA, a novel representation for high-fidelity animatable clothed human avatars with physics-accurate dynamics, even for loose clothing.
Our method achieves high-fidelity rendering of human bodies in complex and novel driving poses, significantly outperforming previous methods under the same settings.
arXiv Detail & Related papers (2024-07-07T10:23:21Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
We introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos.
A pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts.
Our method is able to render natural garment dynamics that deviate highly from the body and well to generalize to both unseen views and poses.
arXiv Detail & Related papers (2024-01-27T08:48:18Z) - BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike
Animated Motion [52.11972919802401]
We show that neural networks trained only on synthetic data achieve state-of-the-art accuracy on the problem of 3D human pose and shape estimation from real images.
Previous synthetic datasets have been small, unrealistic, or lacked realistic clothing.
arXiv Detail & Related papers (2023-06-29T13:35:16Z) - Capturing and Animation of Body and Clothing from Monocular Video [105.87228128022804]
We present SCARF, a hybrid model combining a mesh-based body with a neural radiance field.
integrating the mesh into the rendering enables us to optimize SCARF directly from monocular videos.
We demonstrate that SCARFs clothing with higher visual quality than existing methods, that the clothing deforms with changing body pose and body shape, and that clothing can be successfully transferred between avatars of different subjects.
arXiv Detail & Related papers (2022-10-04T19:34:05Z) - Self-Supervised Collision Handling via Generative 3D Garment Models for
Virtual Try-On [29.458328272854107]
We propose a new generative model for 3D garment deformations that enables us to learn, for the first time, a data-driven method for virtual try-on.
We show that our method is the first to successfully address garment-body contact in unseen body shapes and motions, without compromising realism and detail.
arXiv Detail & Related papers (2021-05-13T17:58:20Z) - Neural 3D Clothes Retargeting from a Single Image [91.5030622330039]
We present a method of clothes; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image.
The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e. images of people wearing the different 3D clothing template model model at exact same pose.
We propose a semi-supervised learning framework that validates the physical plausibility of 3D deformation by matching with the prescribed body-to-cloth contact points and clothing to fit onto the unlabeled silhouette.
arXiv Detail & Related papers (2021-01-29T20:50:34Z) - Deep Fashion3D: A Dataset and Benchmark for 3D Garment Reconstruction
from Single Images [50.34202789543989]
Deep Fashion3D is the largest collection to date of 3D garment models.
It provides rich annotations including 3D feature lines, 3D body pose and the corresponded multi-view real images.
A novel adaptable template is proposed to enable the learning of all types of clothing in a single network.
arXiv Detail & Related papers (2020-03-28T09:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.