論文の概要: Understanding and Addressing Gender Bias in Expert Finding Task
- arxiv url: http://arxiv.org/abs/2407.05335v1
- Date: Sun, 07 Jul 2024 11:35:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 20:15:59.395487
- Title: Understanding and Addressing Gender Bias in Expert Finding Task
- Title(参考訳): 専門家探究課題におけるジェンダーバイアスの理解と対応
- Authors: Maddalena Amendola, Carlos Castillo, Andrea Passarella, Raffaele Perego,
- Abstract要約: 本研究では,現在最先端のExpert Finding(EF)モデルにおける性別バイアスについて検討する。
その結果,評価指標と活動レベルに依存したモデルが男性ユーザにとって不相応に有利であることが判明した。
我々は、よりバランスの取れた事前処理戦略を取り入れたEFモデルの調整を提案し、コンテンツベースおよびソーシャルネットワークベースの情報を活用する。
- 参考スコア(独自算出の注目度): 6.239590365208578
- License:
- Abstract: The Expert Finding (EF) task is critical in community Question&Answer (CQ&A) platforms, significantly enhancing user engagement by improving answer quality and reducing response times. However, biases, especially gender biases, have been identified in these platforms. This study investigates gender bias in state-of-the-art EF models and explores methods to mitigate it. Utilizing a comprehensive dataset from StackOverflow, the largest community in the StackExchange network, we conduct extensive experiments to analyze how EF models' candidate identification processes influence gender representation. Our findings reveal that models relying on reputation metrics and activity levels disproportionately favor male users, who are more active on the platform. This bias results in the underrepresentation of female experts in the ranking process. We propose adjustments to EF models that incorporate a more balanced preprocessing strategy and leverage content-based and social network-based information, with the aim to provide a fairer representation of genders among identified experts. Our analysis shows that integrating these methods can significantly enhance gender balance without compromising model accuracy. To the best of our knowledge, this study is the first to focus on detecting and mitigating gender bias in EF methods.
- Abstract(参考訳): Expert Finding (EF)タスクはコミュニティの質問&回答(CQ&A)プラットフォームにおいて重要であり、回答の品質を改善し、応答時間を短縮することでユーザエンゲージメントを著しく向上させる。
しかし、これらのプラットフォームでは偏見、特に性別偏見が特定されている。
本研究では,現在最先端のEFモデルにおける性別バイアスを調査し,その緩和方法について検討する。
StackExchangeネットワークで最大のコミュニティであるStackOverflowの包括的なデータセットを利用して、EFモデルの候補識別プロセスがジェンダー表現にどのように影響するかを分析する広範な実験を行う。
以上の結果から,評価指標と活動レベルに依存したモデルでは,プラットフォーム上でよりアクティブな男性ユーザの方が好ましくないことが判明した。
このバイアスは、ランク付けプロセスにおける女性専門家の過小評価をもたらす。
我々は,よりバランスの取れた事前処理戦略を取り入れたEFモデルの調整を提案し,コンテンツベースおよびソーシャルネットワークベースの情報を活用し,特定専門家間の性別の公平な表現を提供することを目的とする。
分析の結果,これらの手法を組み合わせることで,モデル精度を損なうことなく男女バランスを大幅に向上させることができることがわかった。
我々の知る限りでは、この研究はEF法における性バイアスの検出と緩和に最初に焦点をあてるものである。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - FaceSaliencyAug: Mitigating Geographic, Gender and Stereotypical Biases via Saliency-Based Data Augmentation [46.74201905814679]
コンピュータビジョンモデルにおける性別バイアスに対処することを目的としたFaceSaliencyAugというアプローチを提案する。
Flickr Faces HQ(FFHQ)、WIKI、IMDB、Labelled Faces in the Wild(LFW)、UTK Faces、Diverseデータセットを含む5つのデータセットで、画像類似度スコア(ISS)を使用してデータセットの多様性を定量化する。
実験の結果,CNN と ViT の男女差の低減が明らかとなり,コンピュータビジョンモデルにおける公平性と傾きの促進に本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2024-10-17T22:36:52Z) - GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - Locating and Mitigating Gender Bias in Large Language Models [40.78150878350479]
大規模言語モデル(LLM)は、人間の好みを含む事実や人間の認知を学ぶために、広範囲なコーパスで事前訓練されている。
このプロセスは、社会においてバイアスや一般的なステレオタイプを取得するこれらのモデルに必然的に導かれる可能性がある。
本稿では,職業代名詞の性別バイアスを軽減する知識編集手法LSDMを提案する。
論文 参考訳(メタデータ) (2024-03-21T13:57:43Z) - DiFair: A Benchmark for Disentangled Assessment of Gender Knowledge and
Bias [13.928591341824248]
事前訓練された言語モデルでよく見られる性別バイアスを軽減するために、デバイアス技術が提案されている。
これらはしばしば、予測においてモデルが性中立である範囲をチェックするデータセットで評価される。
この評価プロトコルは、バイアス緩和が有意義なジェンダー知識に悪影響を及ぼす可能性を見落としている。
論文 参考訳(メタデータ) (2023-10-22T15:27:16Z) - Mitigating Gender Bias in Face Recognition Using the von Mises-Fisher
Mixture Model [7.049738935364298]
本研究では,ディープ顔認識ネットワークの性別バイアスについて検討する。
幾何学的考察により、新しいポストプロセッシング手法により性別バイアスを緩和する。
実際、様々なデータセットに関する広範な数値実験は、慎重に選択することで性バイアスが大幅に減少することを示している。
論文 参考訳(メタデータ) (2022-10-24T23:53:56Z) - Exploring Gender Bias in Retrieval Models [2.594412743115663]
情報検索におけるジェンダーバイアスの緩和は,ステレオタイプの普及を避けるために重要である。
本研究では,(1)クエリに対するドキュメントの関連性,(2)ドキュメントの“ジェンダー”という2つのコンポーネントからなるデータセットを用いる。
我々は,大容量のBERTエンコーダの完全微調整を行う場合,IRの事前学習モデルはゼロショット検索タスクではうまく動作しないことを示す。
また、事前学習されたモデルには性別バイアスがあり、検索された記事は女性よりも男性が多い傾向にあることを示した。
論文 参考訳(メタデータ) (2022-08-02T21:12:05Z) - Improving Gender Fairness of Pre-Trained Language Models without
Catastrophic Forgetting [88.83117372793737]
元のトレーニングデータに情報を埋め込むことは、モデルの下流のパフォーマンスを大きなマージンで損なう可能性がある。
本稿では,GEnder Equality Prompt(GEEP)を提案する。
論文 参考訳(メタデータ) (2021-10-11T15:52:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。