論文の概要: VideoCoT: A Video Chain-of-Thought Dataset with Active Annotation Tool
- arxiv url: http://arxiv.org/abs/2407.05355v1
- Date: Sun, 7 Jul 2024 13:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:07:19.749098
- Title: VideoCoT: A Video Chain-of-Thought Dataset with Active Annotation Tool
- Title(参考訳): VideoCoT:Active Annotationツールを備えたビデオチャット用データセット
- Authors: Yan Wang, Yawen Zeng, Jingsheng Zheng, Xiaofen Xing, Jin Xu, Xiangmin Xu,
- Abstract要約: 我々は,能動的学習パラダイムの下で,機械と人間の専門家を組み合わせた自動アノテーションツールを開発した。
MLLMの複雑な推論能力を最大化するために,CoTを利用して収集したデータセットに基づくベンチマークを提案する。
- 参考スコア(独自算出の注目度): 21.182745175241894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) are flourishing, but mainly focus on images with less attention than videos, especially in sub-fields such as prompt engineering, video chain-of-thought (CoT), and instruction tuning on videos. Therefore, we try to explore the collection of CoT datasets in videos to lead to video OpenQA and improve the reasoning ability of MLLMs. Unfortunately, making such video CoT datasets is not an easy task. Given that human annotation is too cumbersome and expensive, while machine-generated is not reliable due to the hallucination issue, we develop an automatic annotation tool that combines machine and human experts, under the active learning paradigm. Active learning is an interactive strategy between the model and human experts, in this way, the workload of human labeling can be reduced and the quality of the dataset can be guaranteed. With the help of the automatic annotation tool, we strive to contribute three datasets, namely VideoCoT, TopicQA, TopicCoT. Furthermore, we propose a simple but effective benchmark based on the collected datasets, which exploits CoT to maximize the complex reasoning capabilities of MLLMs. Extensive experiments demonstrate the effectiveness our solution.
- Abstract(参考訳): MLLM(Multimodal large language model)は盛んであるが、特にプロンプトエンジニアリング、ビデオチェーン・オブ・シークレット(CoT)、ビデオのチューニングといったサブフィールドにおいて、ビデオよりも注目度が低い画像に焦点を当てている。
そこで我々は,ビデオ中のCoTデータセットの収集から,ビデオOpenQAへの導出とMLLMの推論能力の向上を図る。
残念ながら、このようなビデオCoTデータセットを作成するのは容易ではない。
人間のアノテーションは複雑で高価でありながら、幻覚の問題のため機械生成は信頼できないことを考慮し、能動的学習パラダイムの下で機械と人間の専門家を組み合わせた自動アノテーションツールを開発する。
アクティブラーニングはモデルと人間の専門家の対話的な戦略であり、この方法では、人間のラベル付けの作業量を削減し、データセットの品質を保証することができる。
自動アノテーションツールの助けを借りて、VideoCoT、TopicQA、TopicCoTという3つのデータセットをコントリビュートしようとしています。
さらに, MLLMの複雑な推論能力を最大化するために, CoT を利用した, 収集したデータセットに基づく簡易かつ効果的なベンチマークを提案する。
大規模な実験は、我々のソリューションの有効性を実証する。
関連論文リスト
- VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
空間的詳細と時間的コヒーレンスを保持するビデオQAペアを特徴とする,新しいデータセットであるVideoEspressoを紹介する。
GPT-4o を用いた QA ペア生成にあたり, 冗長性を抑えるためにセマンティック・アウェア法を用いて構成パイプラインを構築した。
フレームセレクタと2段階の命令微調整推論LVLMを備えたハイブリッドLVLM協調フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-22T08:33:36Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - CinePile: A Long Video Question Answering Dataset and Benchmark [55.30860239555001]
我々は、CinePileという新しいデータセットとベンチマークを提示する。
包括的データセットは305,000の多重選択質問(MCQ)から構成されており、様々な視覚的・マルチモーダル的な側面をカバーしている。
トレーニングスプリットに関して、オープンソースのVideo-LLMを微調整し、データセットのテストスプリット上で、オープンソースとプロプライエタリなビデオ中心LLMの両方を評価しました。
論文 参考訳(メタデータ) (2024-05-14T17:59:02Z) - Momentor: Advancing Video Large Language Model with Fine-Grained Temporal Reasoning [102.54669633984278]
本稿では,微細な時間的理解作業を実現するためのビデオLLMであるMomentorを提案する。
Moment-10MでMomentorをトレーニングし、セグメントレベルの推論とローカライゼーションを可能にします。
論文 参考訳(メタデータ) (2024-02-18T03:04:38Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
本稿では,映像情報とテキスト情報の相乗効果を向上するための最先端フレームワークであるVaQuitAを紹介する。
データレベルでは、フレームを均一にサンプリングする代わりに、CLIPスコアランキングでガイドされるサンプリング手法を実装している。
機能レベルでは、Visual-Query Transformerと一緒にトレーニング可能なVideo Perceiverを統合します。
論文 参考訳(メタデータ) (2023-12-04T19:48:02Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
マルチテンポラル言語モデル(LM)は、最近ビデオ上の高レベル推論タスクにおいて有望な性能を示した。
オブジェクト検出,再識別,追跡など,低レベルなサロゲートタスクに対するLMエンドツーエンドのトレーニングを提案し,低レベルな視覚能力を備えたモデルを実現する。
我々は、ACRE、CATER、Some-Else、STARデータセットからの多様な視覚的推論タスクにおけるフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-06-30T16:31:14Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
既存のビデオ理解モデルは、しばしばタスク固有であり、多様なタスクを扱う包括的な能力に欠ける。
我々は,事前学習したLLMのシーケンス推論機能を活用する,VideoLLMという新しいフレームワークを提案する。
VideoLLMは慎重に設計されたModality and Semantic Translatorを組み込んでおり、様々なモードからの入力を統一されたトークンシーケンスに変換する。
論文 参考訳(メタデータ) (2023-05-22T17:51:22Z) - NoisyActions2M: A Multimedia Dataset for Video Understanding from Noisy
Labels [33.659146748289444]
約200万のビデオと関連するユーザ生成アノテーションやその他のメタ情報からなるベンチマークデータセットを作成します。
提案したデータセット上で事前トレーニングされたネットワークは、下流データセットにおけるビデオの破損やラベルノイズに対してどのように役立つかを示す。
論文 参考訳(メタデータ) (2021-10-13T16:12:18Z) - Video Understanding as Machine Translation [53.59298393079866]
我々は、単一の統合フレームワークを用いて、様々なダウンストリームビデオ理解タスクに取り組む。
映像分類(EPIC-Kitchens)、質問応答(TVQA)、キャプション(TVC, YouCook2, MSR-VTT)など、いくつかのダウンストリームタスクにおいて、現状よりもパフォーマンスの向上が報告されている。
論文 参考訳(メタデータ) (2020-06-12T14:07:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。