Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation
- URL: http://arxiv.org/abs/2407.05361v3
- Date: Sat, 7 Sep 2024 15:08:24 GMT
- Title: Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation
- Authors: Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, Yuancheng Wang, Kai Chen, Pengyuan Zhang, Zhizheng Wu,
- Abstract summary: Emilia is the first large-scale, multilingual, and diverse speech generation dataset.
It starts with over 101k hours of speech across six languages, covering a wide range of speaking styles.
To facilitate the scale-up of Emilia, we also present Emilia-Pipe, the first open-source preprocessing pipeline.
- Score: 26.569097905515033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in speech generation models have been significantly driven by the use of large-scale training data. However, producing highly spontaneous, human-like speech remains a challenge due to the scarcity of large, diverse, and spontaneous speech datasets. In response, we introduce Emilia, the first large-scale, multilingual, and diverse speech generation dataset. Emilia starts with over 101k hours of speech across six languages, covering a wide range of speaking styles to enable more natural and spontaneous speech generation. To facilitate the scale-up of Emilia, we also present Emilia-Pipe, the first open-source preprocessing pipeline designed to efficiently transform raw, in-the-wild speech data into high-quality training data with speech annotations. Experimental results demonstrate the effectiveness of both Emilia and Emilia-Pipe. Demos are available at: https://emilia-dataset.github.io/Emilia-Demo-Page/.
Related papers
- Emilia: A Large-Scale, Extensive, Multilingual, and Diverse Dataset for Speech Generation [26.569097905515033]
Emilia is the first multilingual speech generation dataset derived from in-the-wild speech data.
We expand Emilia to Emilia-Large, a dataset exceeding 216k hours, making it the largest open-source speech generation dataset available.
arXiv Detail & Related papers (2025-01-27T09:59:20Z) - Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction.
Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data.
We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora.
arXiv Detail & Related papers (2024-11-26T17:19:09Z) - Investigating the Effects of Large-Scale Pseudo-Stereo Data and Different Speech Foundation Model on Dialogue Generative Spoken Language Model [47.67067056593085]
We develop a pipeline capable of transforming single-channel dialogue data into pseudo-stereo data.
This expanded our training dataset from a mere 2,000 to an impressive 17,600 hours.
The inclusion of this pseudo-stereo data has proven to be effective in improving the performance of spoken dialogue language models.
arXiv Detail & Related papers (2024-07-02T03:22:41Z) - GigaSpeech 2: An Evolving, Large-Scale and Multi-domain ASR Corpus for Low-Resource Languages with Automated Crawling, Transcription and Refinement [36.29371629234269]
GigaSpeech 2 is a large-scale, multi-domain, multilingual speech recognition corpus.
It comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and Vietnamese.
arXiv Detail & Related papers (2024-06-17T13:44:20Z) - TransVIP: Speech to Speech Translation System with Voice and Isochrony Preservation [97.54885207518946]
We introduce a novel model framework TransVIP that leverages diverse datasets in a cascade fashion.
We propose two separated encoders to preserve the speaker's voice characteristics and isochrony from the source speech during the translation process.
Our experiments on the French-English language pair demonstrate that our model outperforms the current state-of-the-art speech-to-speech translation model.
arXiv Detail & Related papers (2024-05-28T04:11:37Z) - Toward Joint Language Modeling for Speech Units and Text [89.32163954508489]
We explore joint language modeling for speech units and text.
We introduce automatic metrics to evaluate how well the joint LM mixes speech and text.
Our results show that by mixing speech units and text with our proposed mixing techniques, the joint LM improves over a speech-only baseline on SLU tasks.
arXiv Detail & Related papers (2023-10-12T20:53:39Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - Textually Pretrained Speech Language Models [107.10344535390956]
We propose TWIST, a method for training SpeechLMs using a warm-start from a pretrained textual language models.
We show using both automatic and human evaluations that TWIST outperforms a cold-start SpeechLM across the board.
arXiv Detail & Related papers (2023-05-22T13:12:16Z) - Joint Pre-Training with Speech and Bilingual Text for Direct Speech to
Speech Translation [94.80029087828888]
Direct speech-to-speech translation (S2ST) is an attractive research topic with many advantages compared to cascaded S2ST.
Direct S2ST suffers from the data scarcity problem because the corpora from speech of the source language to speech of the target language are very rare.
We propose in this paper a Speech2S model, which is jointly pre-trained with unpaired speech and bilingual text data for direct speech-to-speech translation tasks.
arXiv Detail & Related papers (2022-10-31T02:55:51Z) - Distilling a Pretrained Language Model to a Multilingual ASR Model [3.4012007729454816]
We distill the rich knowledge embedded inside a well-trained teacher text model to the student speech model.
We show the superiority of our method on 20 low-resource languages of the CommonVoice dataset with less than 100 hours of speech data.
arXiv Detail & Related papers (2022-06-25T12:36:11Z) - Textless Speech-to-Speech Translation on Real Data [49.134208897722246]
We present a textless speech-to-speech translation (S2ST) system that can translate speech from one language into another language.
We tackle the challenge in modeling multi-speaker target speech and train the systems with real-world S2ST data.
arXiv Detail & Related papers (2021-12-15T18:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.