論文の概要: Image-Conditional Diffusion Transformer for Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2407.05389v1
- Date: Sun, 7 Jul 2024 14:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:47:49.390730
- Title: Image-Conditional Diffusion Transformer for Underwater Image Enhancement
- Title(参考訳): 水中画像強調のためのイメージコンディション拡散変換器
- Authors: Xingyang Nie, Su Pan, Xiaoyu Zhai, Shifei Tao, Fengzhong Qu, Biao Wang, Huilin Ge, Guojie Xiao,
- Abstract要約: 画像条件拡散変換器(ICDT)を用いた新しいUIE法を提案する。
本手法は, 劣化した水中画像を条件入力とし, ICDTを適用した潜時空間に変換する。
我々の最大のモデルであるICDT-XL/2は、画像強調の最先端(SOTA)品質を達成するため、全ての比較手法より優れています。
- 参考スコア(独自算出の注目度): 4.555168682310286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater image enhancement (UIE) has attracted much attention owing to its importance for underwater operation and marine engineering. Motivated by the recent advance in generative models, we propose a novel UIE method based on image-conditional diffusion transformer (ICDT). Our method takes the degraded underwater image as the conditional input and converts it into latent space where ICDT is applied. ICDT replaces the conventional U-Net backbone in a denoising diffusion probabilistic model (DDPM) with a transformer, and thus inherits favorable properties such as scalability from transformers. Furthermore, we train ICDT with a hybrid loss function involving variances to achieve better log-likelihoods, which meanwhile significantly accelerates the sampling process. We experimentally assess the scalability of ICDTs and compare with prior works in UIE on the Underwater ImageNet dataset. Besides good scaling properties, our largest model, ICDT-XL/2, outperforms all comparison methods, achieving state-of-the-art (SOTA) quality of image enhancement.
- Abstract(参考訳): 水中画像強調(UIE)は水中操作と海洋工学の重要性から注目されている。
画像条件拡散変換器(ICDT)を用いた新しいUIE法を提案する。
本手法は, 劣化した水中画像を条件入力とし, ICDTを適用した潜時空間に変換する。
ICDTは、分散確率モデル(DDPM)の従来のU-Netバックボーンをトランスフォーマーに置き換え、トランスフォーマーからのスケーラビリティなどの良好な特性を継承する。
さらに,分散を伴うハイブリッド損失関数を用いてICDTを訓練し,より優れたログ類似性を実現するとともに,サンプリング処理を著しく高速化する。
ICDTのスケーラビリティを実験的に評価し、水中画像NetデータセットにおけるUIEの以前の成果と比較する。
優れたスケーリング特性に加えて、最大のモデルであるICDT-XL/2は、画像強調の最先端(SOTA)品質を達成し、すべての比較手法より優れています。
関連論文リスト
- Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
水中画像強調(UIE)は様々な海洋用途において重要な役割を担っている。
現在の学習に基づくアプローチは、水中画像形成に関わる物理過程に関する明確な事前知識を欠いていることが多い。
そこで本稿では,UIEのカラープリエントとステージ間特徴付与を統合した新しいディープ・アンフォールディング・ネットワーク(DUN)を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:48:33Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
複雑な多段階拡散モデルを1段階条件付きGAN学生モデルに蒸留する。
E-LatentLPIPSは,拡散モデルの潜在空間で直接動作する知覚的損失である。
我々は, 最先端の1ステップ拡散蒸留モデルよりも優れた1ステップ発生器を実証した。
論文 参考訳(メタデータ) (2024-05-09T17:59:40Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
ViT(Vision Transformer)は、特に認識タスクにおいて、強力なモデリング機能とスケーラビリティを実証している。
拡散型生成学習におけるViTの有効性について検討し、拡散ビジョン変換器(DiffiT)と呼ばれる新しいモデルを提案する。
DiffiTはパラメータ効率が大幅に向上した高忠実度画像を生成するのに驚くほど効果的である。
論文 参考訳(メタデータ) (2023-12-04T18:57:01Z) - An Efficient Detection and Control System for Underwater Docking using
Machine Learning and Realistic Simulation: A Comprehensive Approach [5.039813366558306]
この研究は、水中ドッキングの検出と分類を行うために異なるディープラーニングアーキテクチャと比較する。
GAN(Generative Adversarial Network)は画像から画像への変換に用いられ、ガゼボのシミュレーション画像を水中画像に変換する。
その結果,水中の潮流によらず,高濁度シナリオでは20%の改善が見られた。
論文 参考訳(メタデータ) (2023-11-02T18:10:20Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - DearKD: Data-Efficient Early Knowledge Distillation for Vision
Transformers [91.6129538027725]
本稿では,変換器が必要とするデータ効率を向上させるために,DearKDと呼ばれる早期知識蒸留フレームワークを提案する。
私たちのDearKDは、2段階のフレームワークで、まずCNNの初期中間層から誘導バイアスを蒸留し、その後、蒸留なしでトレーニングによってフルプレイする。
論文 参考訳(メタデータ) (2022-04-27T15:11:04Z) - U-shape Transformer for Underwater Image Enhancement [0.0]
本研究では,5004枚の画像対を含む大規模水中画像データセットを構築した。
UIEタスクに初めてトランスモデルを導入したU字型トランスを報告した。
コントラストと彩度をさらに向上するため、RGB, LAB, LCH色空間を組み合わせた新しいロス関数を設計した。
論文 参考訳(メタデータ) (2021-11-23T13:15:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。