LTLBench: Towards Benchmarks for Evaluating Temporal Logic Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2407.05434v1
- Date: Sun, 7 Jul 2024 16:37:06 GMT
- Title: LTLBench: Towards Benchmarks for Evaluating Temporal Logic Reasoning in Large Language Models
- Authors: Weizhi Tang, Vaishak Belle,
- Abstract summary: temporal reasoning (TR) is a critical component of artificial intelligence.
Various datasets have been constructed in different ways for evaluating various aspects of TR ability.
Our work proposes a novel approach to design and develop a pipeline for constructing datasets to evaluate the TR ability of LLMs.
- Score: 5.455744338342196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal reasoning (TR) is a critical component of artificial intelligence, encompassing understanding and processing temporal information and relationships between events. To discover and study the TR ability in Large Language Models (LLMs), various datasets have been constructed in different ways for evaluating various aspects of TR ability. Our work proposes a novel approach to design and develop a pipeline for constructing datasets to evaluate the TR ability of LLMs by leveraging random directed graph generation, LTL formula, and the NuSMV model checker. Based on the pipeline, we have also constructed a dataset as a benchmark, namely LTLBench, consisting of 2,000 TR challenges and evaluated six LLMs with it. Furthermore, we have conducted additional experiments to discover the impact of increasing the number of events and formula operators on the complexity of TR problems and the performance of LLMs. We have demonstrated that although LLMs exhibit some promise in handling TR challenges, they still struggle with complex TR. We expect this work can offer insights into TR ability in LLMs while also providing a valuable tool for future TR evaluations.
Related papers
- Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs! [3.844253028598048]
This study introduces LLMTrack, a model that illustrates how LLMs can be leveraged for Zero-Shot Trajectory Recognition.
We evaluate the model using real-world datasets designed to challenge it with distinct trajectories characterized by indoor and outdoor scenarios.
arXiv Detail & Related papers (2024-03-10T12:50:35Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Are Large Language Models Table-based Fact-Checkers? [17.636623242137585]
Table-based Fact Verification (TFV) aims to extract the entailment relation between statements and structured tables.
Existing TFV methods based on small-scaled models suffer from insufficient labeled data and weak zero-shot ability.
Large Language Models (LLMs) have shown powerful zero-shot and in-context learning abilities.
arXiv Detail & Related papers (2024-02-04T15:52:59Z) - Large Language Models Can Learn Temporal Reasoning [11.599570446840547]
We propose TG-LLM, a novel framework towards language-based temporal reasoning.
Instead of reasoning over the original context, we adopt a latent representation, temporal graph (TG)
A synthetic dataset (TGQA) is fully controllable and requires minimal supervision.
arXiv Detail & Related papers (2024-01-12T19:00:26Z) - Chain of History: Learning and Forecasting with LLMs for Temporal
Knowledge Graph Completion [24.545917737620197]
Temporal Knowledge Graph Completion (TKGC) is a complex task involving the prediction of missing event links at future timestamps.
This paper aims to provide a comprehensive perspective on harnessing the advantages of Large Language Models for reasoning in temporal knowledge graphs.
arXiv Detail & Related papers (2024-01-11T17:42:47Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.