Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity
- URL: http://arxiv.org/abs/2501.14315v1
- Date: Fri, 24 Jan 2025 08:18:56 GMT
- Title: Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity
- Authors: Chao-Chung Wu, Zhi Rui Tam, Chieh-Yen Lin, Hung-yi Lee, Yun-Nung Chen,
- Abstract summary: We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
- Score: 61.48338027901318
- License:
- Abstract: Maintaining consistent model performance across domains is a fundamental challenge in machine learning. While recent work has explored using LLM-generated data for fine-tuning, its impact on cross-domain generalization remains poorly understood. In this paper, we present a systematic analysis revealing that fine-tuning with LLM-generated data not only improves target task performance but also reduces out-of-domain (OOD) degradation compared to fine-tuning with ground truth data. Through analyzing the data sequence in tasks of various domains, we demonstrate that this enhanced OOD robustness stems from a reduced prevalence of high perplexity tokens in LLM-generated sequences. Following this hypothesis we showed that masking high perplexity tokens in ground truth training data also achieves similar OOD preservation comparable to using LLM-generated data. Extensive experiments across diverse model architectures and scales, including Gemma2-2B, Mistral-7B and Llama3-8B, corroborate the consistency of our findings. To the best of our knowledge, this work provides the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data, offering valuable insights for developing more robust fine-tuning strategies.
Related papers
- RLS3: RL-Based Synthetic Sample Selection to Enhance Spatial Reasoning in Vision-Language Models for Indoor Autonomous Perception [20.01853641155509]
Vision-language model (VLM) fine-tuning for application-specific visual grounding based on natural language instructions has become one of the most popular approaches for learning-enabled autonomous systems.
We propose a new generalizable framework to improve VLM fine-tuning by integrating it with a reinforcement learning (RL) agent.
arXiv Detail & Related papers (2025-01-31T04:30:42Z) - LLM-Forest: Ensemble Learning of LLMs with Graph-Augmented Prompts for Data Imputation [37.14344322899091]
Large language models (LLMs), trained on vast corpora, have shown strong potential in data generation.
We propose a novel framework, LLM-Forest, which introduces a "forest" of few-shot learning LLM "trees" with confidence-based weighted voting.
This framework is established on a new concept of bipartite information graphs to identify high-quality relevant neighboring entries.
arXiv Detail & Related papers (2024-10-28T20:42:46Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - Learning on Graphs with Large Language Models(LLMs): A Deep Dive into Model Robustness [39.57155321515097]
Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing tasks.
It remains unclear whether LLMs exhibit robustness in learning on graphs.
arXiv Detail & Related papers (2024-07-16T09:05:31Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
Machine unlearning, which seeks to erase specific data stored in the pre-trained or fine-tuned models, has emerged as a crucial protective measure for LLMs.
To facilitate the development of structural unlearning methods, we propose PISTOL, a pipeline for compiling multi-scenario datasets.
We conduct benchmarks with four distinct unlearning methods on both Llama2-7B and Mistral-7B models.
arXiv Detail & Related papers (2024-06-24T17:22:36Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - How Good Are LLMs at Out-of-Distribution Detection? [13.35571704613836]
Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning (ML) models.
This paper embarks on a pioneering empirical investigation of OOD detection in the domain of large language models (LLMs)
arXiv Detail & Related papers (2023-08-20T13:15:18Z) - Revisiting Out-of-distribution Robustness in NLP: Benchmark, Analysis,
and LLMs Evaluations [111.88727295707454]
This paper reexamines the research on out-of-distribution (OOD) robustness in the field of NLP.
We propose a benchmark construction protocol that ensures clear differentiation and challenging distribution shifts.
We conduct experiments on pre-trained language models for analysis and evaluation of OOD robustness.
arXiv Detail & Related papers (2023-06-07T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.