Semantic Segmentation for Real-World and Synthetic Vehicle's Forward-Facing Camera Images
- URL: http://arxiv.org/abs/2407.05452v1
- Date: Sun, 7 Jul 2024 17:28:45 GMT
- Title: Semantic Segmentation for Real-World and Synthetic Vehicle's Forward-Facing Camera Images
- Authors: Tuan T. Nguyen, Phan Le, Yasir Hassan, Mina Sartipi,
- Abstract summary: This is the solution for semantic segmentation problem in both real-world and synthetic images from a vehicle s forward-facing camera.
We concentrate in building a robust model which performs well across various domains of different outdoor situations.
This paper studies the effectiveness of employing real-world and synthetic data to handle the domain adaptation in semantic segmentation problem.
- Score: 0.8562182926816566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present the submission to the 5th Annual Smoky Mountains Computational Sciences Data Challenge, Challenge 3. This is the solution for semantic segmentation problem in both real-world and synthetic images from a vehicle s forward-facing camera. We concentrate in building a robust model which performs well across various domains of different outdoor situations such as sunny, snowy, rainy, etc. In particular, our method is developed with two main directions: model development and domain adaptation. In model development, we use the High Resolution Network (HRNet) as the baseline. Then, this baseline s result is processed by two coarse-to-fine models: Object-Contextual Representations (OCR) and Hierarchical Multi-scale Attention (HMA) to get the better robust feature. For domain adaption, we implement the Domain-Based Batch Normalization (DNB) to reduce the distribution shift from diverse domains. Our proposed method yield 81.259 mean intersection-over-union (mIoU) in validation set. This paper studies the effectiveness of employing real-world and synthetic data to handle the domain adaptation in semantic segmentation problem.
Related papers
- Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
arXiv Detail & Related papers (2024-05-24T22:13:31Z) - Cross-domain and Cross-dimension Learning for Image-to-Graph
Transformers [50.576354045312115]
Direct image-to-graph transformation is a challenging task that solves object detection and relationship prediction in a single model.
We introduce a set of methods enabling cross-domain and cross-dimension transfer learning for image-to-graph transformers.
We demonstrate our method's utility in cross-domain and cross-dimension experiments, where we pretrain our models on 2D satellite images before applying them to vastly different target domains in 2D and 3D.
arXiv Detail & Related papers (2024-03-11T10:48:56Z) - Source-Free and Image-Only Unsupervised Domain Adaptation for Category
Level Object Pose Estimation [18.011044932979143]
3DUDA is a method capable of adapting to a nuisance-ridden target domain without 3D or depth data.
We represent object categories as simple cuboid meshes, and harness a generative model of neural feature activations.
We show that our method simulates fine-tuning on a global pseudo-labeled dataset under mild assumptions.
arXiv Detail & Related papers (2024-01-19T17:48:05Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
We propose an self-supervised domain-agnostic domain adaptation (SS(DA)2) method to perform domain adaptation without such a domain definition.
We first design a contrastive generative adversarial loss to train a generative network to perform image-to-image translation between any two satellite image patches.
Then, we improve the generalizability of the downstream models by augmenting the training data with different testing spectral characteristics.
arXiv Detail & Related papers (2023-09-20T07:37:23Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - I2F: A Unified Image-to-Feature Approach for Domain Adaptive Semantic
Segmentation [55.633859439375044]
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work.
Key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly.
This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation.
arXiv Detail & Related papers (2023-01-03T15:19:48Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - High-resolution semantically-consistent image-to-image translation [0.0]
This paper proposes an unsupervised domain adaptation model that preserves semantic consistency and per-pixel quality for the images during the style-transferring phase.
The proposed model shows substantial performance gain compared to the SemI2I model and reaches similar results as the state-of-the-art CyCADA model.
arXiv Detail & Related papers (2022-09-13T19:08:30Z) - A Domain Gap Aware Generative Adversarial Network for Multi-domain Image
Translation [22.47113158859034]
The paper proposes a unified model to translate images across multiple domains with significant domain gaps.
With a single unified generator, the model can maintain consistency over the global shapes as well as the local texture information across multiple domains.
arXiv Detail & Related papers (2021-10-21T00:33:06Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
Multi-Source Domain Adaptation (MSDA) focuses on transferring the knowledge from multiple source domains to the target domain.
We propose two types of graphical models,i.e. Conditional Random Field for MSDA (CRF-MSDA) and Markov Random Field for MSDA (MRF-MSDA)
We evaluate these two models on four standard benchmark data sets of MSDA with distinct domain shift and data complexity.
arXiv Detail & Related papers (2021-04-27T09:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.