Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images
- URL: http://arxiv.org/abs/2405.15961v1
- Date: Fri, 24 May 2024 22:13:31 GMT
- Title: Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images
- Authors: Yiran Luo, Joshua Feinglass, Tejas Gokhale, Kuan-Cheng Lee, Chitta Baral, Yezhou Yang,
- Abstract summary: Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
- Score: 63.58800688320182
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain Generalization (DG) is a challenging task in machine learning that requires a coherent ability to comprehend shifts across various domains through extraction of domain-invariant features. DG performance is typically evaluated by performing image classification in domains of various image styles. However, current methodology lacks quantitative understanding about shifts in stylistic domain, and relies on a vast amount of pre-training data, such as ImageNet1K, which are predominantly in photo-realistic style with weakly supervised class labels. Such a data-driven practice could potentially result in spurious correlation and inflated performance on DG benchmarks. In this paper, we introduce a new DG paradigm to address these risks. We first introduce two new quantitative measures ICV and IDD to describe domain shifts in terms of consistency of classes within one domain and similarity between two stylistic domains. We then present SuperMarioDomains (SMD), a novel synthetic multi-domain dataset sampled from video game scenes with more consistent classes and sufficient dissimilarity compared to ImageNet1K. We demonstrate our DG method SMOS. SMOS first uses SMD to train a precursor model, which is then used to ground the training on a DG benchmark. We observe that SMOS contributes to state-of-the-art performance across five DG benchmarks, gaining large improvements to performances on abstract domains along with on-par or slight improvements to those on photo-realistic domains. Our qualitative analysis suggests that these improvements can be attributed to reduced distributional divergence between originally distant domains. Our data are available at https://github.com/fpsluozi/SMD-SMOS .
Related papers
- Domain-Guided Weight Modulation for Semi-Supervised Domain Generalization [11.392783918495404]
We study the challenging problem of semi-supervised domain generalization.
The goal is to learn a domain-generalizable model while using only a small fraction of labeled data and a relatively large fraction of unlabeled data.
We propose a novel method that can facilitate the generation of accurate pseudo-labels under various domain shifts.
arXiv Detail & Related papers (2024-09-04T01:26:23Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
Unsupervised domain adaptation (UDA) and domain generalization (DG) enable machine learning models trained on a source domain to perform well on unlabeled or unseen target domains.
We propose HRDA, a multi-resolution framework for UDA&DG, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention.
arXiv Detail & Related papers (2023-04-26T15:18:45Z) - Federated Domain Generalization for Image Recognition via Cross-Client
Style Transfer [60.70102634957392]
Domain generalization (DG) has been a hot topic in image recognition, with a goal to train a general model that can perform well on unseen domains.
In this paper, we propose a novel domain generalization method for image recognition through cross-client style transfer (CCST) without exchanging data samples.
Our method outperforms recent SOTA DG methods on two DG benchmarks (PACS, OfficeHome) and a large-scale medical image dataset (Camelyon17) in the FL setting.
arXiv Detail & Related papers (2022-10-03T13:15:55Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
We propose a novel Multi-scale Multi-target Domain Adversarial Network (M2DAN) for angle closure classification.
Based on these domain-invariant features at different scales, the deep model trained on the source domain is able to classify angle closure on multiple target domains.
arXiv Detail & Related papers (2022-08-25T15:27:55Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
We propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts.
Our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2022-01-13T07:03:16Z) - Semi-supervised Meta-learning with Disentanglement for
Domain-generalised Medical Image Segmentation [15.351113774542839]
Generalising models to new data from new centres (termed here domains) remains a challenge.
We propose a novel semi-supervised meta-learning framework with disentanglement.
We show that the proposed method is robust on different segmentation tasks and achieves state-of-the-art generalisation performance on two public benchmarks.
arXiv Detail & Related papers (2021-06-24T19:50:07Z) - Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation [78.28390172958643]
We identify two key aspects that can help to alleviate multiple domain-shifts in the multi-target domain adaptation (MTDA)
We propose Curriculum Graph Co-Teaching (CGCT) that uses a dual classifier head, with one of them being a graph convolutional network (GCN) which aggregates features from similar samples across the domains.
When the domain labels are available, we propose Domain-aware Curriculum Learning (DCL), a sequential adaptation strategy that first adapts on the easier target domains, followed by the harder ones.
arXiv Detail & Related papers (2021-04-01T23:41:41Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z) - Domain Adaptation on Semantic Segmentation for Aerial Images [3.946367634483361]
We propose a novel unsupervised domain adaptation framework to address domain shift in semantic image segmentation.
We also apply entropy minimization on the target domain to produce high-confident prediction.
We show improvement over state-of-the-art methods in terms of various metrics.
arXiv Detail & Related papers (2020-12-03T20:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.