Physically Accessible and Inaccessible Quantum Correlations of Dirac Fields in Schwarzschild Spacetime
- URL: http://arxiv.org/abs/2407.05509v1
- Date: Sun, 7 Jul 2024 22:55:13 GMT
- Title: Physically Accessible and Inaccessible Quantum Correlations of Dirac Fields in Schwarzschild Spacetime
- Authors: Samira Elghaayda, Asad Ali, Saif Al-Kuwari, Mostafa Mansour,
- Abstract summary: textitAlice and textitBob share a textitGisin state near the Schwarzschild black hole.
Hawking decoherence reduces the quantum correlations of Dirac fields in the physically accessible region.
As Hawking decoherence intensifies in the physically inaccessible and spacetime regions, the quantum correlations of Dirac fields reemerge.
- Score: 0.6749750044497732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we investigate the influence of Hawking decoherence on the quantum correlations of Dirac fields between \textit{Alice} and \textit{Bob}. Initially, they share a \textit{Gisin} state near the Schwarzschild black hole (SBH) in an asymptotically flat region. Then, \textit{Alice} remains stationary in this region, while \textit{Bob} hovers near the event horizon (EH) of the SBH. We expect that \textit{Bob}, using his excited detector, will detect a thermal Fermi-Dirac particle distribution. We assess the quantum correlations in the evolved \textit{Gisin} state using quantum consonance and uncertainty-induced non-locality across physically accessible, physically inaccessible, and spacetime regions. Our investigation examines how these measures vary with Hawking temperature, Dirac particle frequency, and the parameters of the initial \textit{Gisin} state. Additionally, we analyze the distribution of these quantum correlation measures across all possible regions, noting a redistribution towards the physically inaccessible region. Our findings demonstrate that Hawking decoherence reduces the quantum correlations of Dirac fields in the physically accessible region, with the extent of reduction depending on the initial state parameters. Moreover, as Hawking decoherence intensifies in the physically inaccessible and spacetime regions, the quantum correlations of Dirac fields reemerge and ultimately converge to specific values at infinite Hawking temperature. These results contribute to our understanding of quantum correlation dynamics within the framework of relativistic quantum information (RQI).
Related papers
- Maximal steered coherence in the background of Schwarzschild space-time [9.092982651471674]
We find that as the Hawking temperature increases, the physically accessible MSC degrades while the unaccessible MSC increases.
Our findings illuminate the intricate dynamics of quantum information in the vicinity of black holes.
arXiv Detail & Related papers (2024-08-22T13:40:33Z) - Quantum obesity and steering ellipsoids for fermionic fields in Garfinkle-Horowitz-Strominger dilation spacetime [0.0]
This paper investigates quantum obesity (QO), quantum discord (QD), and the quantum steering ellipsoid (QSE) for bipartite Gisin states subjected to Garfinkle-Horowitz-Strominger dilation of spacetime on the second qubit.
arXiv Detail & Related papers (2024-08-13T13:07:26Z) - Distribution of distance-based quantum resources outside a radiating
Schwarzschild black hole [2.6098692031389583]
We examine the distribution of quantum resources in the proximity of a Schwarzschild black hole.
We find that coherence and discord exhibit sudden disappearance for certain initial states.
In contrast to coherence and discord, we are unable to regenerate entanglement for a given initial state.
arXiv Detail & Related papers (2024-02-19T17:30:39Z) - Quantum Characteristics Near Event Horizons [4.233828584645792]
We investigate quantum characteristics around Schwarzschild black hole, exploring various quantum resources and their interplay in curved space-time.
Our analysis reveals intriguing behaviors of quantum coherence, global and genuine multipartite entanglement, first-order coherence, and mutual information in different scenarios.
arXiv Detail & Related papers (2024-01-22T15:15:18Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Nonreciprocal Generation of Schr\"{o}dinger Cat State Induced by
Topology [16.939175598826477]
We explore the interplay between quantum nonreciprocity and topology in a one-dimensional microcavity array.
We obtain the Schr"odinger cat state in a chosen direction at the edge cavity, whereas a it classical state in the other direction.
The obtained cat state has nonreciprocal high fidelity, nonclassicality, and quantum coherence.
arXiv Detail & Related papers (2023-12-16T13:30:11Z) - Quantum properties of fermionic fields in multi-event horizon spacetime [0.0]
We investigate the properties of quantum entanglement and mutual information in the multi-event horizon Schwarzschild-de Sitter (SdS) spacetime for massless Dirac fields.
We obtain the expression for the evolutions of the quantum state near the black hole event horizon (BEH) and cosmological event horizon (CEH) in the SdS spacetime.
arXiv Detail & Related papers (2023-11-13T03:17:36Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Experimental study of decoherence of the two-mode squeezed vacuum state
via second harmonic generation [19.5474623165562]
We report a novel scheme on the study of decoherence of a two-mode squeezed vacuum state via its second harmonic generation signal.
Our scheme can directly extract the decoherence of the phase-sensitive quantum correlation $langle hatahatbrangle$ between two entangled modes.
This is an experimental study on the decoherence effect of a squeezed vacuum state, which has been rarely investigated.
arXiv Detail & Related papers (2020-12-22T05:38:24Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.