Experimental quantum phase discrimination enhanced by controllable
indistinguishability-based coherence
- URL: http://arxiv.org/abs/2103.14802v1
- Date: Sat, 27 Mar 2021 03:50:03 GMT
- Title: Experimental quantum phase discrimination enhanced by controllable
indistinguishability-based coherence
- Authors: Kai Sun, Zheng-Hao Liu, Yan Wang, Ze-Yan Hao, Xiao-Ye Xu, Jin-Shi Xu,
Chuan-Feng Li, Guang-Can Guo, Alessia Castellini, Ludovico Lami, Andreas
Winter, Gerardo Adesso, Giuseppe Compagno, Rosario Lo Franco
- Abstract summary: Coherence emerges in a fundamentally different way for nonidentical and identical particles.
We experimentally demonstrate this additional contribution to quantum coherence.
Our experiment proves that independent indistinguishable particles can supply a controllable resource of coherence.
- Score: 13.745478068219699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum coherence, a basic feature of quantum mechanics residing in
superpositions of quantum states, is a resource for quantum information
processing. Coherence emerges in a fundamentally different way for nonidentical
and identical particles, in that for the latter a unique contribution exists
linked to indistinguishability which cannot occur for nonidentical particles.
We experimentally demonstrate by an optical setup this additional contribution
to quantum coherence, showing that its amount directly depends on the degree of
indistinguishability and exploiting it to run a quantum phase discrimination
protocol. Furthermore, the designed setup allows for simulating Fermionic
particles with photons, thus assessing the role of particle statistics (Bosons
or Fermions) in coherence generation and utilization. Our experiment proves
that independent indistinguishable particles can supply a controllable resource
of coherence for quantum metrology.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Quantum interference between non-identical single particles [5.9606530319748385]
Quantum interference between identical single particles reveals the intrinsic quantum statistic nature of particles.
Our work extends the understanding of the quantum interference effects and demonstrates a versatile experimental platform for studying and engineering quantum statistics of particles.
arXiv Detail & Related papers (2023-08-24T09:36:35Z) - Experimental demonstration of separating the waveparticle duality of a
single photon with the quantum Cheshire cat [18.728749435511805]
We experimentally separated the wave and particle attributes of a single photon by exploiting the quantum Cheshire cat concept.
By applying a weak disturbance to the evolution of the system, we achieve an effect similar to the quantum Cheshire cat.
arXiv Detail & Related papers (2023-03-09T11:35:01Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum Interference between Photons and Single Quanta of Stored Atomic
Coherence [19.90349094720023]
We observe quantum interference between flying photons and a single quantum of stored atomic coherence (magnon) in an atom-light beam splitter interface.
The bunching behavior that characterizes bosons is observed, but counterintuitively, fermionlike antibunching as well.
The hybrid nature of the demonstrated magnon-photon quantum interface can be applied to versatile quantum memory platforms.
arXiv Detail & Related papers (2021-09-23T05:25:47Z) - Deterministic quantum correlation between coherently paired photons
acting on a beam splitter [0.0]
We study the quantum natures of paired photons acting on a beam splitter, where mutual coherence plays a major role.
Unlike current common understanding on anticorrelation, bipartite entanglement between paired photons does not have to be probabilistic or post-selected.
arXiv Detail & Related papers (2021-08-21T23:24:18Z) - Experimental demonstrations of coherence de Broglie waves using
sub-Poisson distributed coherent photon pairs [0.0]
A new interpretation of quantum mechanics has been developed for the wave nature of a photon, where determinacy in quantum correlations becomes an inherent property without the violation of quantum mechanics.
Here, we experimentally demonstrate a direct proof of the wave natures of quantum correlation for the so-called coherence de Broglie waves (CBWs) using sub-Poisson distributed coherent photon pairs.
arXiv Detail & Related papers (2021-07-21T15:13:12Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z) - A Chirality-Based Quantum Leap [46.53135635900099]
Chiral degrees of freedom occur in matter and in electromagnetic fields.
Recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials.
arXiv Detail & Related papers (2020-08-31T22:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.