論文の概要: Explainable Image Recognition via Enhanced Slot-attention Based Classifier
- arxiv url: http://arxiv.org/abs/2407.05616v1
- Date: Mon, 8 Jul 2024 05:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:00:01.927723
- Title: Explainable Image Recognition via Enhanced Slot-attention Based Classifier
- Title(参考訳): Slot-attention Based Classifierによる説明可能な画像認識
- Authors: Bowen Wang, Liangzhi Li, Jiahao Zhang, Yuta Nakashima, Hajime Nagahara,
- Abstract要約: 本稿では,修正スロットアテンション機構に基づく視覚的に説明可能な分類器であるESCOUTERを紹介する。
ESCOUTERは、高い分類精度を提供するだけでなく、意思決定の背後にある理由についてより透明な洞察を提供することによって、自分自身を区別している。
ESCOUTER専用の新しい損失関数は、モデルの振舞いを微調整し、肯定的な説明と否定的な説明の切り替えを可能にするように設計されている。
- 参考スコア(独自算出の注目度): 28.259040737540797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The imperative to comprehend the behaviors of deep learning models is of utmost importance. In this realm, Explainable Artificial Intelligence (XAI) has emerged as a promising avenue, garnering increasing interest in recent years. Despite this, most existing methods primarily depend on gradients or input perturbation, which often fails to embed explanations directly within the model's decision-making process. Addressing this gap, we introduce ESCOUTER, a visually explainable classifier based on the modified slot attention mechanism. ESCOUTER distinguishes itself by not only delivering high classification accuracy but also offering more transparent insights into the reasoning behind its decisions. It differs from prior approaches in two significant aspects: (a) ESCOUTER incorporates explanations into the final confidence scores for each category, providing a more intuitive interpretation, and (b) it offers positive or negative explanations for all categories, elucidating "why an image belongs to a certain category" or "why it does not." A novel loss function specifically for ESCOUTER is designed to fine-tune the model's behavior, enabling it to toggle between positive and negative explanations. Moreover, an area loss is also designed to adjust the size of the explanatory regions for a more precise explanation. Our method, rigorously tested across various datasets and XAI metrics, outperformed previous state-of-the-art methods, solidifying its effectiveness as an explanatory tool.
- Abstract(参考訳): ディープラーニングモデルの振る舞いを理解する義務は、非常に重要である。
この領域では、説明可能な人工知能(XAI)が有望な道として現れ、近年の関心が高まっている。
それにもかかわらず、既存のほとんどの手法は、主に勾配や入力の摂動に依存しており、しばしばモデルの意思決定プロセスに直接説明を埋め込むのに失敗する。
このギャップに対処するために,修正スロットアテンション機構に基づく視覚的に説明可能な分類器であるESCOUTERを導入する。
ESCOUTERは、高い分類精度を提供するだけでなく、意思決定の背後にある理由についてより透明な洞察を提供することによって、自分自身を区別している。
従来のアプローチとは大きく異なる点が2つある。
(a) ESCOUTERは、各カテゴリの最終的な信頼度スコアに説明を組み込み、より直感的な解釈を提供し、
(b)「なぜあるカテゴリに属しているのか」や「なぜそうでないのか」など、すべてのカテゴリについて肯定的または否定的な説明を提供する。
ESCOUTER専用の新しい損失関数は、モデルの振舞いを微調整し、肯定的な説明と否定的な説明の切り替えを可能にするように設計されている。
さらに、より正確な説明のために、説明領域のサイズを調整するために、エリアロスも設計されている。
提案手法は,様々なデータセットやXAIメトリクスに対して厳密に検証され,従来の最先端手法よりも優れており,説明ツールとしての有効性が確立されている。
関連論文リスト
- Noise-Free Explanation for Driving Action Prediction [11.330363757618379]
我々は, この欠陥を解消するための, 実装が容易だが効果的な方法を提案する: 平滑な騒音ノルム注意(SNNA)
変換された値ベクトルのノルムで注意を重み付け、アテンション勾配でラベル固有の信号を誘導し、入力摂動をランダムにサンプリングし、対応する勾配を平均化し、ノイズのない属性を生成する。
定性的かつ定量的な評価結果は、より明確な視覚的説明図を作成し、入力画素の重要度をランク付けする他のSOTA注意に基づく説明可能な方法と比較して、SNNAの優位性を示している。
論文 参考訳(メタデータ) (2024-07-08T19:21:24Z) - CNN-based explanation ensembling for dataset, representation and explanations evaluation [1.1060425537315088]
畳み込みモデルを用いた深層分類モデルによる説明文の要約の可能性について検討する。
実験と分析を通じて、モデル行動のより一貫性と信頼性のあるパターンを明らかにするために、説明を組み合わせることの意味を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-04-16T08:39:29Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Motif-guided Time Series Counterfactual Explanations [1.1510009152620664]
本稿では,ポストホックな反事実的説明を直感的に生成する新しいモデルを提案する。
UCRリポジトリから5つの実世界の時系列データセットを用いてモデルを検証した。
論文 参考訳(メタデータ) (2022-11-08T17:56:50Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - SCOUTER: Slot Attention-based Classifier for Explainable Image
Recognition [27.867833878756553]
透明かつ正確な分類のためのスロットアテンションに基づく SCOUTER という分類器を提案する。
SCOUTERの説明は各カテゴリの最終的な信頼性に関係しており、より直感的な解釈を提供する。
SCOUTERに最適化された新たな損失を設計し,モデル動作を制御することにより,肯定的な説明と否定的な説明を切り替える。
論文 参考訳(メタデータ) (2020-09-14T01:34:56Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
説明は、深い分類網が決定を下す視覚的証拠の領域として定義される。
トレーニング戦略は周期的な正当性に基づくフィードバックを強制し、モデルが地中真実に直接対応する画像領域に焦点を合わせることを奨励する。
論文 参考訳(メタデータ) (2020-03-13T22:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。